MDAPITM the OLAP Application�Program Interface�Version 2.0
Java Reference
January 1998
�
MDAPI TM The OLAP Application Program Interface Version 2.0 Specification
The OLAP Council
3271 NW Blackcomb Drive
Portland, OR 97229
© Copyright OLAP Council, January 1998
Permission is granted to anyone to use, alter, and redistribute this specification freely, subject to the following restrictions:
The OLAP Council is not responsible for any consequences arising from the use of this specification or any altered version of it.
The origin of this specification must not be misrepresented, either by claim or by omission. Acknowledgment to the OLAP Council must appear in any altered version of this specification.
Any altered version of this specification must be designated as such and must not be misrepresented as being published or endorsed by the OLAP Council.
This notice may not be removed or altered.
�TABLE OF CONTENTS
� TOC \o "1-3" \t "Preface 1,1,Preface 2,2" �Preface	� GOTOBUTTON _Toc410087518 � PAGEREF _Toc410087518 �xiii��
Scope	� GOTOBUTTON _Toc410087519 � PAGEREF _Toc410087519 �xiii��
About this document	� GOTOBUTTON _Toc410087520 � PAGEREF _Toc410087520 �xiii��
Organization of this document	� GOTOBUTTON _Toc410087521 � PAGEREF _Toc410087521 �xiv��
1 Introduction	� GOTOBUTTON _Toc410087522 � PAGEREF _Toc410087522 �1��
2 Environmental Considerations	� GOTOBUTTON _Toc410087523 � PAGEREF _Toc410087523 �3��
Parameter passing	� GOTOBUTTON _Toc410087524 � PAGEREF _Toc410087524 �3��
Error handling	� GOTOBUTTON _Toc410087525 � PAGEREF _Toc410087525 �3��
Multi-vendor support	� GOTOBUTTON _Toc410087526 � PAGEREF _Toc410087526 �4��
Session	� GOTOBUTTON _Toc410087527 � PAGEREF _Toc410087527 �5��
Collections	� GOTOBUTTON _Toc410087528 � PAGEREF _Toc410087528 �5��
Enumerations	� GOTOBUTTON _Toc410087529 � PAGEREF _Toc410087529 �6��
Any	� GOTOBUTTON _Toc410087530 � PAGEREF _Toc410087530 �7��
Attributes	� GOTOBUTTON _Toc410087531 � PAGEREF _Toc410087531 �7��
3 Enumerations	� GOTOBUTTON _Toc410087532 � PAGEREF _Toc410087532 �8��
Query	� GOTOBUTTON _Toc410087533 � PAGEREF _Toc410087533 �9��
Class SortOrder	� GOTOBUTTON _Toc410087534 � PAGEREF _Toc410087534 �9��
Enumeration Values	� GOTOBUTTON _Toc410087535 � PAGEREF _Toc410087535 �9��
Methods	� GOTOBUTTON _Toc410087536 � PAGEREF _Toc410087536 �9��
Meaning	� GOTOBUTTON _Toc410087537 � PAGEREF _Toc410087537 �9��
Class QueryStatus	� GOTOBUTTON _Toc410087538 � PAGEREF _Toc410087538 �9��
Enumeration Values	� GOTOBUTTON _Toc410087539 � PAGEREF _Toc410087539 �9��
Methods	� GOTOBUTTON _Toc410087540 � PAGEREF _Toc410087540 �9��
Meaning	� GOTOBUTTON _Toc410087541 � PAGEREF _Toc410087541 �10��
Class InitialSelection	� GOTOBUTTON _Toc410087542 � PAGEREF _Toc410087542 �10��
Enumeration Values	� GOTOBUTTON _Toc410087543 � PAGEREF _Toc410087543 �10��
Methods	� GOTOBUTTON _Toc410087544 � PAGEREF _Toc410087544 �10��
Meaning	� GOTOBUTTON _Toc410087545 � PAGEREF _Toc410087545 �10��
AsynchronousSupport	� GOTOBUTTON _Toc410087546 � PAGEREF _Toc410087546 �11��
Class ProgressStatus	� GOTOBUTTON _Toc410087547 � PAGEREF _Toc410087547 �11��
Enumeration Values	� GOTOBUTTON _Toc410087548 � PAGEREF _Toc410087548 �11��
Methods	� GOTOBUTTON _Toc410087549 � PAGEREF _Toc410087549 �11��
Meaning	� GOTOBUTTON _Toc410087550 � PAGEREF _Toc410087550 �11��
Common	� GOTOBUTTON _Toc410087551 � PAGEREF _Toc410087551 �12��
Class ErrorCode	� GOTOBUTTON _Toc410087552 � PAGEREF _Toc410087552 �12��
Enumeration Values	� GOTOBUTTON _Toc410087553 � PAGEREF _Toc410087553 �12��
Methods	� GOTOBUTTON _Toc410087554 � PAGEREF _Toc410087554 �12��
Meaning	� GOTOBUTTON _Toc410087555 � PAGEREF _Toc410087555 �12��
Class SeverityCode	� GOTOBUTTON _Toc410087556 � PAGEREF _Toc410087556 �13��
Enumeration Values	� GOTOBUTTON _Toc410087557 � PAGEREF _Toc410087557 �14��
Methods	� GOTOBUTTON _Toc410087558 � PAGEREF _Toc410087558 �14��
Meaning	� GOTOBUTTON _Toc410087559 � PAGEREF _Toc410087559 �14��
MetaData	� GOTOBUTTON _Toc410087560 � PAGEREF _Toc410087560 �15��
Class HierarchyDirection	� GOTOBUTTON _Toc410087561 � PAGEREF _Toc410087561 �15��
Enumeration Values	� GOTOBUTTON _Toc410087562 � PAGEREF _Toc410087562 �15��
Methods	� GOTOBUTTON _Toc410087563 � PAGEREF _Toc410087563 �15��
Meaning	� GOTOBUTTON _Toc410087564 � PAGEREF _Toc410087564 �15��
Class DimensionType	� GOTOBUTTON _Toc410087565 � PAGEREF _Toc410087565 �15��
Enumeration Values	� GOTOBUTTON _Toc410087566 � PAGEREF _Toc410087566 �15��
Methods	� GOTOBUTTON _Toc410087567 � PAGEREF _Toc410087567 �15��
Meaning	� GOTOBUTTON _Toc410087568 � PAGEREF _Toc410087568 �16��
Class MemberRelation	� GOTOBUTTON _Toc410087569 � PAGEREF _Toc410087569 �16��
Enumeration Values	� GOTOBUTTON _Toc410087570 � PAGEREF _Toc410087570 �16��
Methods	� GOTOBUTTON _Toc410087571 � PAGEREF _Toc410087571 �16��
Meaning	� GOTOBUTTON _Toc410087572 � PAGEREF _Toc410087572 �16��
Class DataType	� GOTOBUTTON _Toc410087573 � PAGEREF _Toc410087573 �17��
Enumeration Values	� GOTOBUTTON _Toc410087574 � PAGEREF _Toc410087574 �17��
Methods	� GOTOBUTTON _Toc410087575 � PAGEREF _Toc410087575 �17��
Meaning	� GOTOBUTTON _Toc410087576 � PAGEREF _Toc410087576 �17��
4 Classes	� GOTOBUTTON _Toc410087577 � PAGEREF _Toc410087577 �19��
Interface Any	� GOTOBUTTON _Toc410087578 � PAGEREF _Toc410087578 �20��
Method Any::Any	� GOTOBUTTON _Toc410087579 � PAGEREF _Toc410087579 �20��
Method Any::Any	� GOTOBUTTON _Toc410087580 � PAGEREF _Toc410087580 �21��
Method Any::Any	� GOTOBUTTON _Toc410087581 � PAGEREF _Toc410087581 �21��
Method Any::Any	� GOTOBUTTON _Toc410087582 � PAGEREF _Toc410087582 �22��
Method Any::Any	� GOTOBUTTON _Toc410087583 � PAGEREF _Toc410087583 �22��
Method Any::Any	� GOTOBUTTON _Toc410087584 � PAGEREF _Toc410087584 �23��
Method Any::getType	� GOTOBUTTON _Toc410087585 � PAGEREF _Toc410087585 �23��
Method Any::getMissing	� GOTOBUTTON _Toc410087586 � PAGEREF _Toc410087586 �23��
Method Any::doubleValue	� GOTOBUTTON _Toc410087587 � PAGEREF _Toc410087587 �24��
Method Any::floatValue	� GOTOBUTTON _Toc410087588 � PAGEREF _Toc410087588 �24��
Method Any:: longValue	� GOTOBUTTON _Toc410087589 � PAGEREF _Toc410087589 �24��
Method Any:: stringValue	� GOTOBUTTON _Toc410087590 � PAGEREF _Toc410087590 �25��
Method Any::dateValue	� GOTOBUTTON _Toc410087591 � PAGEREF _Toc410087591 �25��
Method Any:: booleanValue	� GOTOBUTTON _Toc410087592 � PAGEREF _Toc410087592 �25��
Method Any:: toString	� GOTOBUTTON _Toc410087593 � PAGEREF _Toc410087593 �26��
Interface Buffer	� GOTOBUTTON _Toc410087594 � PAGEREF _Toc410087594 �27��
Method Buffer::getExtent	� GOTOBUTTON _Toc410087595 � PAGEREF _Toc410087595 �28��
Method Buffer::getValuesCount	� GOTOBUTTON _Toc410087596 � PAGEREF _Toc410087596 �28��
Method Buffer::getEdgeBuffers	� GOTOBUTTON _Toc410087597 � PAGEREF _Toc410087597 �28��
Method Buffer::getCube	� GOTOBUTTON _Toc410087598 � PAGEREF _Toc410087598 �28��
Method Buffer::getCurrentCell	� GOTOBUTTON _Toc410087599 � PAGEREF _Toc410087599 �28��
Method Buffer::getCells	� GOTOBUTTON _Toc410087600 � PAGEREF _Toc410087600 �28��
Method Buffer::getCellsFloat	� GOTOBUTTON _Toc410087601 � PAGEREF _Toc410087601 �29��
Method Buffer::getCellsDouble	� GOTOBUTTON _Toc410087602 � PAGEREF _Toc410087602 �30��
Method Buffer::getCellsText	� GOTOBUTTON _Toc410087603 � PAGEREF _Toc410087603 �31��
Method Buffer::getCellsLong	� GOTOBUTTON _Toc410087604 � PAGEREF _Toc410087604 �32��
Method Buffer::getCellsDate	� GOTOBUTTON _Toc410087605 � PAGEREF _Toc410087605 �33��
Method Buffer::getCellsBool	� GOTOBUTTON _Toc410087606 � PAGEREF _Toc410087606 �34��
Interface Cell	� GOTOBUTTON _Toc410087607 � PAGEREF _Toc410087607 �35��
Method Cell::getValue	� GOTOBUTTON _Toc410087608 � PAGEREF _Toc410087608 �35��
Interface Connection	� GOTOBUTTON _Toc410087609 � PAGEREF _Toc410087609 �36��
Method Connection::getMaxEdges	� GOTOBUTTON _Toc410087610 � PAGEREF _Toc410087610 �36��
Method Connection::getMinEdges	� GOTOBUTTON _Toc410087611 � PAGEREF _Toc410087611 �37��
Method Connection::getLanguage	� GOTOBUTTON _Toc410087612 � PAGEREF _Toc410087612 �37��
Method Connection::setLanguage	� GOTOBUTTON _Toc410087613 � PAGEREF _Toc410087613 �37��
Method Connection::getSupportedLanguages	� GOTOBUTTON _Toc410087614 � PAGEREF _Toc410087614 �37��
Method Connection::getSession	� GOTOBUTTON _Toc410087615 � PAGEREF _Toc410087615 �37��
Method Connection::getMeasureDimension	� GOTOBUTTON _Toc410087616 � PAGEREF _Toc410087616 �38��
Method Connection::getDimensions	� GOTOBUTTON _Toc410087617 � PAGEREF _Toc410087617 �38��
Method Connection::getDescriptors	� GOTOBUTTON _Toc410087618 � PAGEREF _Toc410087618 �38��
Method Connection::getDefaultDescriptor	� GOTOBUTTON _Toc410087619 � PAGEREF _Toc410087619 �38��
Method Connection::getDefaultProperty	� GOTOBUTTON _Toc410087620 � PAGEREF _Toc410087620 �38��
Method Connection::newCube	� GOTOBUTTON _Toc410087621 � PAGEREF _Toc410087621 �38��
Method Connection::closeConnection	� GOTOBUTTON _Toc410087622 � PAGEREF _Toc410087622 �39��
Interface Cube	� GOTOBUTTON _Toc410087623 � PAGEREF _Toc410087623 �41��
Method Cube::getName	� GOTOBUTTON _Toc410087624 � PAGEREF _Toc410087624 �41��
Method Cube::setName	� GOTOBUTTON _Toc410087625 � PAGEREF _Toc410087625 �42��
Method Cube::getEdges	� GOTOBUTTON _Toc410087626 � PAGEREF _Toc410087626 �42��
Method Cube::getDescriptors	� GOTOBUTTON _Toc410087627 � PAGEREF _Toc410087627 �42��
Method Cube::pivot	� GOTOBUTTON _Toc410087628 � PAGEREF _Toc410087628 �42��
Method Cube::rotate	� GOTOBUTTON _Toc410087629 � PAGEREF _Toc410087629 �43��
Method Cube::setContext	� GOTOBUTTON _Toc410087630 � PAGEREF _Toc410087630 �43��
Method Cube::setOrientation	� GOTOBUTTON _Toc410087631 � PAGEREF _Toc410087631 �44��
Method Cube::validate	� GOTOBUTTON _Toc410087632 � PAGEREF _Toc410087632 �45��
Method Cube::validateAsync	� GOTOBUTTON _Toc410087633 � PAGEREF _Toc410087633 �46��
Method Cube::getCell	� GOTOBUTTON _Toc410087634 � PAGEREF _Toc410087634 �46��
Method Cube::clone	� GOTOBUTTON _Toc410087635 � PAGEREF _Toc410087635 �47��
Method Cube::newBuffer	� GOTOBUTTON _Toc410087636 � PAGEREF _Toc410087636 �47��
Method Cube::createEdge	� GOTOBUTTON _Toc410087637 � PAGEREF _Toc410087637 �48��
Method Cube::removeEdge	� GOTOBUTTON _Toc410087638 � PAGEREF _Toc410087638 �49��
Method Cube::addDescriptor	� GOTOBUTTON _Toc410087639 � PAGEREF _Toc410087639 �49��
Method Cube::removeDescriptor	� GOTOBUTTON _Toc410087640 � PAGEREF _Toc410087640 �50��
Method Cube::getSubQuery	� GOTOBUTTON _Toc410087641 � PAGEREF _Toc410087641 �50��
Method Cube::getStatus	� GOTOBUTTON _Toc410087642 � PAGEREF _Toc410087642 �51��
Method Cube::getOrientation	� GOTOBUTTON _Toc410087643 � PAGEREF _Toc410087643 �51��
Method Cube::pivotToNestLevel	� GOTOBUTTON _Toc410087644 � PAGEREF _Toc410087644 �52��
Interface CubeEdge	� GOTOBUTTON _Toc410087645 � PAGEREF _Toc410087645 �53��
Method CubeEdge::getSuppressMissing	� GOTOBUTTON _Toc410087646 � PAGEREF _Toc410087646 �53��
Method CubeEdge::setSuppressMissing	� GOTOBUTTON _Toc410087647 � PAGEREF _Toc410087647 �53��
Method CubeEdge::getSuppressZeros	� GOTOBUTTON _Toc410087648 � PAGEREF _Toc410087648 �54��
Method CubeEdge::setSuppressZeros	� GOTOBUTTON _Toc410087649 � PAGEREF _Toc410087649 �54��
Method CubeEdge::getCube	� GOTOBUTTON _Toc410087650 � PAGEREF _Toc410087650 �54��
Method CubeEdge::getNestedQueries	� GOTOBUTTON _Toc410087651 � PAGEREF _Toc410087651 �54��
Method CubeEdge::getDimensions	� GOTOBUTTON _Toc410087652 � PAGEREF _Toc410087652 �55��
Method CubeEdge::resultCount	� GOTOBUTTON _Toc410087653 � PAGEREF _Toc410087653 �55��
Method CubeEdge::getCellIndex	� GOTOBUTTON _Toc410087654 � PAGEREF _Toc410087654 �55��
Method CubeEdge::getIndexMembers	� GOTOBUTTON _Toc410087655 � PAGEREF _Toc410087655 �56��
Method CubeEdge::getNestingOfDimension	� GOTOBUTTON _Toc410087656 � PAGEREF _Toc410087656 �57��
Interface Dimension	� GOTOBUTTON _Toc410087657 � PAGEREF _Toc410087657 �58��
Method Dimension::getDimensionType	� GOTOBUTTON _Toc410087658 � PAGEREF _Toc410087658 �58��
Method Dimension::getHierarchies	� GOTOBUTTON _Toc410087659 � PAGEREF _Toc410087659 �58��
Method Dimension::getDefaultHierarchy	� GOTOBUTTON _Toc410087660 � PAGEREF _Toc410087660 �58��
Method Dimension::getLevels	� GOTOBUTTON _Toc410087661 � PAGEREF _Toc410087661 �59��
Interface Driver	� GOTOBUTTON _Toc410087662 � PAGEREF _Toc410087662 �60��
Method Driver::getVendorName	� GOTOBUTTON _Toc410087663 � PAGEREF _Toc410087663 �60��
Method Driver::getDriverProduct	� GOTOBUTTON _Toc410087664 � PAGEREF _Toc410087664 �60��
Method Driver::getDriverVersion	� GOTOBUTTON _Toc410087665 � PAGEREF _Toc410087665 �60��
Method Driver::getDriverName	� GOTOBUTTON _Toc410087666 � PAGEREF _Toc410087666 �60��
Method Driver::getLanguage	� GOTOBUTTON _Toc410087667 � PAGEREF _Toc410087667 �61��
Method Driver::getAvailableSchemata	� GOTOBUTTON _Toc410087668 � PAGEREF _Toc410087668 �61��
Method Driver::getSession	� GOTOBUTTON _Toc410087669 � PAGEREF _Toc410087669 �61��
Method Driver::openConnection	� GOTOBUTTON _Toc410087670 � PAGEREF _Toc410087670 �61��
Method Driver::getSchemataByName	� GOTOBUTTON _Toc410087671 � PAGEREF _Toc410087671 �62��
Interface EdgeBuffer	� GOTOBUTTON _Toc410087672 � PAGEREF _Toc410087672 �63��
Method EdgeBuffer::getExtent	� GOTOBUTTON _Toc410087673 � PAGEREF _Toc410087673 �63��
Method EdgeBuffer::getEdgeLayerBuffers	� GOTOBUTTON _Toc410087674 � PAGEREF _Toc410087674 �63��
Method EdgeBuffer::getCubeEdge	� GOTOBUTTON _Toc410087675 � PAGEREF _Toc410087675 �63��
Method EdgeBuffer::next	� GOTOBUTTON _Toc410087676 � PAGEREF _Toc410087676 �63��
Method EdgeBuffer::previous	� GOTOBUTTON _Toc410087677 � PAGEREF _Toc410087677 �64��
Method EdgeBuffer::setIndex	� GOTOBUTTON _Toc410087678 � PAGEREF _Toc410087678 �65��
Method EdgeBuffer::scroll	� GOTOBUTTON _Toc410087679 � PAGEREF _Toc410087679 �65��
Interface EdgeLayerBuffer	� GOTOBUTTON _Toc410087680 � PAGEREF _Toc410087680 �67��
Method EdgeLayerBuffer::getExtent	� GOTOBUTTON _Toc410087681 � PAGEREF _Toc410087681 �67��
Method EdgeLayerBuffer::getPropertiesCount	� GOTOBUTTON _Toc410087682 � PAGEREF _Toc410087682 �67��
Method EdgeLayerBuffer::getValuesCount	� GOTOBUTTON _Toc410087683 � PAGEREF _Toc410087683 �67��
Method EdgeLayerBuffer::getMemberQuery	� GOTOBUTTON _Toc410087684 � PAGEREF _Toc410087684 �68��
Method EdgeLayerBuffer::getCurrentCell	� GOTOBUTTON _Toc410087685 � PAGEREF _Toc410087685 �68��
Method EdgeLayerBuffer::getEdgeLayerCells	� GOTOBUTTON _Toc410087686 � PAGEREF _Toc410087686 �68��
Method EdgeLayerBuffer::getCellsFloat	� GOTOBUTTON _Toc410087687 � PAGEREF _Toc410087687 �69��
Method EdgeLayerBuffer::getCellsDouble	� GOTOBUTTON _Toc410087688 � PAGEREF _Toc410087688 �70��
Method EdgeLayerBuffer::getCellsText	� GOTOBUTTON _Toc410087689 � PAGEREF _Toc410087689 �70��
Method EdgeLayerBuffer::getCellsLong	� GOTOBUTTON _Toc410087690 � PAGEREF _Toc410087690 �71��
Method EdgeLayerBuffer::getCellsDate	� GOTOBUTTON _Toc410087691 � PAGEREF _Toc410087691 �72��
Method EdgeLayerBuffer::getCellsBool	� GOTOBUTTON _Toc410087692 � PAGEREF _Toc410087692 �73��
Interface EdgeLayerCell	� GOTOBUTTON _Toc410087693 � PAGEREF _Toc410087693 �75��
Method EdgeLayerCell::getSpan	� GOTOBUTTON _Toc410087694 � PAGEREF _Toc410087694 �75��
Method EdgeLayerCell::getOffset	� GOTOBUTTON _Toc410087695 � PAGEREF _Toc410087695 �75��
Method EdgeLayerCell::getMember	� GOTOBUTTON _Toc410087696 � PAGEREF _Toc410087696 �75��
Method EdgeLayerCell::getCell	� GOTOBUTTON _Toc410087697 � PAGEREF _Toc410087697 �76��
Interface Hierarchy	� GOTOBUTTON _Toc410087698 � PAGEREF _Toc410087698 �77��
Method Hierarchy::getLevels	� GOTOBUTTON _Toc410087699 � PAGEREF _Toc410087699 �77��
Method Hierarchy::relationQuery	� GOTOBUTTON _Toc410087700 � PAGEREF _Toc410087700 �77��
Interface Language	� GOTOBUTTON _Toc410087701 � PAGEREF _Toc410087701 �79��
Method Language::getName	� GOTOBUTTON _Toc410087702 � PAGEREF _Toc410087702 �79��
Interface Level	� GOTOBUTTON _Toc410087703 � PAGEREF _Toc410087703 �80��
Method Level::getDimension	� GOTOBUTTON _Toc410087704 � PAGEREF _Toc410087704 �80��
Interface Measure	� GOTOBUTTON _Toc410087705 � PAGEREF _Toc410087705 �81��
Method Measure::getScale	� GOTOBUTTON _Toc410087706 � PAGEREF _Toc410087706 �81��
Method Measure::getPrecision	� GOTOBUTTON _Toc410087707 � PAGEREF _Toc410087707 �81��
Method Measure::getType	� GOTOBUTTON _Toc410087708 � PAGEREF _Toc410087708 �82��
Method Measure::getDimensions	� GOTOBUTTON _Toc410087709 � PAGEREF _Toc410087709 �82��
Method Measure::getValueType	� GOTOBUTTON _Toc410087710 � PAGEREF _Toc410087710 �82��
Interface Member	� GOTOBUTTON _Toc410087711 � PAGEREF _Toc410087711 �83��
Method Member::getName	� GOTOBUTTON _Toc410087712 � PAGEREF _Toc410087712 �83��
Method Member::getDimension	� GOTOBUTTON _Toc410087713 � PAGEREF _Toc410087713 �83��
Interface MemberQuery	� GOTOBUTTON _Toc410087714 � PAGEREF _Toc410087714 �84��
Method MemberQuery::getParameters	� GOTOBUTTON _Toc410087715 � PAGEREF _Toc410087715 �85��
Method MemberQuery::getDescriptors	� GOTOBUTTON _Toc410087716 � PAGEREF _Toc410087716 �85��
Method MemberQuery::keep	� GOTOBUTTON _Toc410087717 � PAGEREF _Toc410087717 �85��
Method MemberQuery::add	� GOTOBUTTON _Toc410087718 � PAGEREF _Toc410087718 �86��
Method MemberQuery::remove	� GOTOBUTTON _Toc410087719 � PAGEREF _Toc410087719 �87��
Method MemberQuery::removeMember	� GOTOBUTTON _Toc410087720 � PAGEREF _Toc410087720 �88��
Method MemberQuery::addMember	� GOTOBUTTON _Toc410087721 � PAGEREF _Toc410087721 �89��
Method MemberQuery::addAllFrom	� GOTOBUTTON _Toc410087722 � PAGEREF _Toc410087722 �90��
Method MemberQuery::removeAllFrom	� GOTOBUTTON _Toc410087723 � PAGEREF _Toc410087723 �90��
Method MemberQuery::keepAllFrom	� GOTOBUTTON _Toc410087724 � PAGEREF _Toc410087724 �91��
Method MemberQuery::addRelations	� GOTOBUTTON _Toc410087725 � PAGEREF _Toc410087725 �92��
Method MemberQuery::removeRelations	� GOTOBUTTON _Toc410087726 � PAGEREF _Toc410087726 �93��
Method MemberQuery::addGeneration	� GOTOBUTTON _Toc410087727 � PAGEREF _Toc410087727 �94��
Method MemberQuery::keepRelations	� GOTOBUTTON _Toc410087728 � PAGEREF _Toc410087728 �95��
Method MemberQuery::sortByValue	� GOTOBUTTON _Toc410087729 � PAGEREF _Toc410087729 �96��
Method MemberQuery::sortByHierarchy	� GOTOBUTTON _Toc410087730 � PAGEREF _Toc410087730 �97��
Method MemberQuery::sortByLevel	� GOTOBUTTON _Toc410087731 � PAGEREF _Toc410087731 �98��
Method MemberQuery::resetNaturalSortOrder	� GOTOBUTTON _Toc410087732 � PAGEREF _Toc410087732 �99��
Method MemberQuery::resort	� GOTOBUTTON _Toc410087733 � PAGEREF _Toc410087733 �100��
Method MemberQuery::selectAll	� GOTOBUTTON _Toc410087734 � PAGEREF _Toc410087734 �101��
Method MemberQuery::selectNone	� GOTOBUTTON _Toc410087735 � PAGEREF _Toc410087735 �101��
Method MemberQuery::newPropertyValueExpression	� GOTOBUTTON _Toc410087736 � PAGEREF _Toc410087736 �102��
Method MemberQuery::newCellValueExpression	� GOTOBUTTON _Toc410087737 � PAGEREF _Toc410087737 �103��
Method MemberQuery::newParameter	� GOTOBUTTON _Toc410087738 � PAGEREF _Toc410087738 �104��
Method MemberQuery::clone	� GOTOBUTTON _Toc410087739 � PAGEREF _Toc410087739 �105��
Method MemberQuery::validate	� GOTOBUTTON _Toc410087740 � PAGEREF _Toc410087740 �105��
Method MemberQuery::validateAsync	� GOTOBUTTON _Toc410087741 � PAGEREF _Toc410087741 �106��
Method MemberQuery::resultCount	� GOTOBUTTON _Toc410087742 � PAGEREF _Toc410087742 �107��
Method MemberQuery::getParameterByName	� GOTOBUTTON _Toc410087743 � PAGEREF _Toc410087743 �107��
Method MemberQuery::addDescriptor	� GOTOBUTTON _Toc410087744 � PAGEREF _Toc410087744 �108��
Method MemberQuery::removeDescriptor	� GOTOBUTTON _Toc410087745 � PAGEREF _Toc410087745 �109��
Method MemberQuery::addProperty	� GOTOBUTTON _Toc410087746 � PAGEREF _Toc410087746 �109��
Method MemberQuery::removeProperty	� GOTOBUTTON _Toc410087747 � PAGEREF _Toc410087747 �110��
Method MemberQuery::newBuffer	� GOTOBUTTON _Toc410087748 � PAGEREF _Toc410087748 �111��
Method MemberQuery::select	� GOTOBUTTON _Toc410087749 � PAGEREF _Toc410087749 �112��
Method MemberQuery::selectAllFrom	� GOTOBUTTON _Toc410087750 � PAGEREF _Toc410087750 �112��
Method MemberQuery::selectRelations	� GOTOBUTTON _Toc410087751 � PAGEREF _Toc410087751 �113��
Method MemberQuery::selectGeneration	� GOTOBUTTON _Toc410087752 � PAGEREF _Toc410087752 �114��
Method MemberQuery::getStatus	� GOTOBUTTON _Toc410087753 � PAGEREF _Toc410087753 �115��
Method MemberQuery::addMembers	� GOTOBUTTON _Toc410087754 � PAGEREF _Toc410087754 �116��
Interface MemberScope	� GOTOBUTTON _Toc410087755 � PAGEREF _Toc410087755 �117��
Method MemberScope::getName	� GOTOBUTTON _Toc410087756 � PAGEREF _Toc410087756 �117��
Method MemberScope::getDimension	� GOTOBUTTON _Toc410087757 � PAGEREF _Toc410087757 �117��
Method MemberScope::newQuery	� GOTOBUTTON _Toc410087758 � PAGEREF _Toc410087758 �117��
Interface Message	� GOTOBUTTON _Toc410087759 � PAGEREF _Toc410087759 �119��
Method Message::getMessage	� GOTOBUTTON _Toc410087760 � PAGEREF _Toc410087760 �119��
Method Message::getErrorCode	� GOTOBUTTON _Toc410087761 � PAGEREF _Toc410087761 �119��
Method Message::getNativeCode	� GOTOBUTTON _Toc410087762 � PAGEREF _Toc410087762 �119��
Method Message::getSeverity	� GOTOBUTTON _Toc410087763 � PAGEREF _Toc410087763 �119��
Class OLAPException	� GOTOBUTTON _Toc410087764 � PAGEREF _Toc410087764 �121��
Method OLAPException::getMaximumSeverity	� GOTOBUTTON _Toc410087765 � PAGEREF _Toc410087765 �121��
Method OLAPException::getMessages	� GOTOBUTTON _Toc410087766 � PAGEREF _Toc410087766 �121��
Interface ParameterHolder	� GOTOBUTTON _Toc410087767 � PAGEREF _Toc410087767 �122��
Method ParameterHolder::getValue	� GOTOBUTTON _Toc410087768 � PAGEREF _Toc410087768 �122��
Method ParameterHolder::setValue	� GOTOBUTTON _Toc410087769 � PAGEREF _Toc410087769 �122��
Method ParameterHolder::getName	� GOTOBUTTON _Toc410087770 � PAGEREF _Toc410087770 �122��
Interface ProgressMonitor	� GOTOBUTTON _Toc410087771 � PAGEREF _Toc410087771 �123��
Method ProgressMonitor::getMessages	� GOTOBUTTON _Toc410087772 � PAGEREF _Toc410087772 �123��
Method ProgressMonitor::cancel	� GOTOBUTTON _Toc410087773 � PAGEREF _Toc410087773 �123��
Method ProgressMonitor::wait	� GOTOBUTTON _Toc410087774 � PAGEREF _Toc410087774 �124��
Method ProgressMonitor::getStatus	� GOTOBUTTON _Toc410087775 � PAGEREF _Toc410087775 �124��
Interface Property	� GOTOBUTTON _Toc410087776 � PAGEREF _Toc410087776 �126��
Method Property::getName	� GOTOBUTTON _Toc410087777 � PAGEREF _Toc410087777 �126��
Method Property::getType	� GOTOBUTTON _Toc410087778 � PAGEREF _Toc410087778 �126��
Method Property::getScope	� GOTOBUTTON _Toc410087779 � PAGEREF _Toc410087779 �127��
Method Property::getValueType	� GOTOBUTTON _Toc410087780 � PAGEREF _Toc410087780 �127��
Method Property::getValue	� GOTOBUTTON _Toc410087781 � PAGEREF _Toc410087781 �127��
Interface PropertyScope	� GOTOBUTTON _Toc410087782 � PAGEREF _Toc410087782 �129��
Method PropertyScope::getScopeProperties	� GOTOBUTTON _Toc410087783 � PAGEREF _Toc410087783 �129��
Method PropertyScope::getPropertyByName	� GOTOBUTTON _Toc410087784 � PAGEREF _Toc410087784 �129��
Method PropertyScope::getAllProperties	� GOTOBUTTON _Toc410087785 � PAGEREF _Toc410087785 �130��
Interface Schema	� GOTOBUTTON _Toc410087786 � PAGEREF _Toc410087786 �131��
Method Schema::getSchemaVersion	� GOTOBUTTON _Toc410087787 � PAGEREF _Toc410087787 �131��
Method Schema::getSchemaName	� GOTOBUTTON _Toc410087788 � PAGEREF _Toc410087788 �131��
Method Schema::getConnectionString	� GOTOBUTTON _Toc410087789 � PAGEREF _Toc410087789 �131��
Method Schema::getLanguage	� GOTOBUTTON _Toc410087790 � PAGEREF _Toc410087790 �131��
Method Schema::setLanguage	� GOTOBUTTON _Toc410087791 � PAGEREF _Toc410087791 �132��
Method Schema::getAvailableLanguages	� GOTOBUTTON _Toc410087792 � PAGEREF _Toc410087792 �132��
Method Schema::getDriver	� GOTOBUTTON _Toc410087793 � PAGEREF _Toc410087793 �132��
Interface Session	� GOTOBUTTON _Toc410087794 � PAGEREF _Toc410087794 �133��
Method Session::getApiVersion	� GOTOBUTTON _Toc410087795 � PAGEREF _Toc410087795 �133��
Method Session::getLanguage	� GOTOBUTTON _Toc410087796 � PAGEREF _Toc410087796 �133��
Method Session::getOpenConnections	� GOTOBUTTON _Toc410087797 � PAGEREF _Toc410087797 �133��
Method Session::getInstalledDrivers	� GOTOBUTTON _Toc410087798 � PAGEREF _Toc410087798 �133��
Method Session::getDriverByName	� GOTOBUTTON _Toc410087799 � PAGEREF _Toc410087799 �134��
Method Session::openConnection	� GOTOBUTTON _Toc410087800 � PAGEREF _Toc410087800 �134��
Interface ValueDescriptor	� GOTOBUTTON _Toc410087801 � PAGEREF _Toc410087801 �136��
Method ValueDescriptor::getName	� GOTOBUTTON _Toc410087802 � PAGEREF _Toc410087802 �136��
Interface ValueExpression	� GOTOBUTTON _Toc410087803 � PAGEREF _Toc410087803 �137��
Method ValueExpression::getDataType	� GOTOBUTTON _Toc410087804 � PAGEREF _Toc410087804 �137��
Method ValueExpression::getDisplayString	� GOTOBUTTON _Toc410087805 � PAGEREF _Toc410087805 �137��
Method ValueExpression::getQuery	� GOTOBUTTON _Toc410087806 � PAGEREF _Toc410087806 �138��
Method ValueExpression::opGT	� GOTOBUTTON _Toc410087807 � PAGEREF _Toc410087807 �138��
Method ValueExpression::opGE	� GOTOBUTTON _Toc410087808 � PAGEREF _Toc410087808 �139��
Method ValueExpression::opLT	� GOTOBUTTON _Toc410087809 � PAGEREF _Toc410087809 �140��
Method ValueExpression::opLE	� GOTOBUTTON _Toc410087810 � PAGEREF _Toc410087810 �140��
Method ValueExpression::opEQ	� GOTOBUTTON _Toc410087811 � PAGEREF _Toc410087811 �141��
Method ValueExpression::opNE	� GOTOBUTTON _Toc410087812 � PAGEREF _Toc410087812 �142��
Method ValueExpression::isMissing	� GOTOBUTTON _Toc410087813 � PAGEREF _Toc410087813 �143��
Method ValueExpression::isBetween	� GOTOBUTTON _Toc410087814 � PAGEREF _Toc410087814 �144��
Method ValueExpression::isInTopN	� GOTOBUTTON _Toc410087815 � PAGEREF _Toc410087815 �145��
Method ValueExpression::isInBottomN	� GOTOBUTTON _Toc410087816 � PAGEREF _Toc410087816 �146��
Method ValueExpression::isInPercentile	� GOTOBUTTON _Toc410087817 � PAGEREF _Toc410087817 �147��
Interface ValueType	� GOTOBUTTON _Toc410087818 � PAGEREF _Toc410087818 �149��
Method ValueType::getType	� GOTOBUTTON _Toc410087819 � PAGEREF _Toc410087819 �149��
5 Collection classes	� GOTOBUTTON _Toc410087820 � PAGEREF _Toc410087820 �151��
Class Collection	� GOTOBUTTON _Toc410087821 � PAGEREF _Toc410087821 �152��
Method CellCollection::capacity	� GOTOBUTTON _Toc410087822 � PAGEREF _Toc410087822 �152��
Method Collection::clear	� GOTOBUTTON _Toc410087823 � PAGEREF _Toc410087823 �152��
Method Collection::clone	� GOTOBUTTON _Toc410087824 � PAGEREF _Toc410087824 �153��
Method Collection::contains	� GOTOBUTTON _Toc410087825 � PAGEREF _Toc410087825 �153��
Method Collection::elementAt	� GOTOBUTTON _Toc410087826 � PAGEREF _Toc410087826 �153��
Method Collection::elements	� GOTOBUTTON _Toc410087827 � PAGEREF _Toc410087827 �154��
Method CellCollection::ensureCapacity	� GOTOBUTTON _Toc410087828 � PAGEREF _Toc410087828 �154��
Method Collection::isEmpty	� GOTOBUTTON _Toc410087829 � PAGEREF _Toc410087829 �155��
Method Collection::indexOf	� GOTOBUTTON _Toc410087830 � PAGEREF _Toc410087830 �155��
Method Collection::indexOf	� GOTOBUTTON _Toc410087831 � PAGEREF _Toc410087831 �156��
Method Collection::setSize	� GOTOBUTTON _Toc410087832 � PAGEREF _Toc410087832 �156��
Method Collection::size	� GOTOBUTTON _Toc410087833 � PAGEREF _Toc410087833 �157��
Method Collection::trimToSize	� GOTOBUTTON _Toc410087834 � PAGEREF _Toc410087834 �157��
Class CellCollection	� GOTOBUTTON _Toc410087835 � PAGEREF _Toc410087835 �158��
Method CellCollection::CellCollection	� GOTOBUTTON _Toc410087836 � PAGEREF _Toc410087836 �158��
Method CellCollection::CellCollection	� GOTOBUTTON _Toc410087837 � PAGEREF _Toc410087837 �159��
Method CellCollection::CellCollection	� GOTOBUTTON _Toc410087838 � PAGEREF _Toc410087838 �159��
Method CellCollection::add	� GOTOBUTTON _Toc410087839 � PAGEREF _Toc410087839 �159��
Method CellCollection::addAll	� GOTOBUTTON _Toc410087840 � PAGEREF _Toc410087840 �160��
Method CellCollection::addAll	� GOTOBUTTON _Toc410087841 � PAGEREF _Toc410087841 �160��
Method CellCollection::firstCell	� GOTOBUTTON _Toc410087842 � PAGEREF _Toc410087842 �161��
Method CellCollection::lastCell	� GOTOBUTTON _Toc410087843 � PAGEREF _Toc410087843 �161��
Method CellCollection::remove	� GOTOBUTTON _Toc410087844 � PAGEREF _Toc410087844 �161��
Method CellCollection::remove	� GOTOBUTTON _Toc410087845 � PAGEREF _Toc410087845 �162��
Method CellCollection::removeAll	� GOTOBUTTON _Toc410087846 � PAGEREF _Toc410087846 �162��
Method CellCollection::retainAll	� GOTOBUTTON _Toc410087847 � PAGEREF _Toc410087847 �163��
Method CellCollection::set	� GOTOBUTTON _Toc410087848 � PAGEREF _Toc410087848 �163��
Method CellCollection::toArray	� GOTOBUTTON _Toc410087849 � PAGEREF _Toc410087849 �164��
Method CellCollection::cellAt	� GOTOBUTTON _Toc410087850 � PAGEREF _Toc410087850 �164��
Class ConnectionCollection	� GOTOBUTTON _Toc410087851 � PAGEREF _Toc410087851 �165��
Class CubeEdgeCollection	� GOTOBUTTON _Toc410087852 � PAGEREF _Toc410087852 �166��
Class DimensionCollection	� GOTOBUTTON _Toc410087853 � PAGEREF _Toc410087853 �167��
Class DriverCollection	� GOTOBUTTON _Toc410087854 � PAGEREF _Toc410087854 �168��
Class EdgeBufferCollection	� GOTOBUTTON _Toc410087855 � PAGEREF _Toc410087855 �169��
Class EdgeLayerBufferCollection	� GOTOBUTTON _Toc410087856 � PAGEREF _Toc410087856 �170��
Class EdgeLayerCellCollection	� GOTOBUTTON _Toc410087857 � PAGEREF _Toc410087857 �171��
Class HierarchyCollection	� GOTOBUTTON _Toc410087858 � PAGEREF _Toc410087858 �172��
Class LanguageCollection	� GOTOBUTTON _Toc410087859 � PAGEREF _Toc410087859 �173��
Class LevelCollection	� GOTOBUTTON _Toc410087860 � PAGEREF _Toc410087860 �174��
Class MemberCollection	� GOTOBUTTON _Toc410087861 � PAGEREF _Toc410087861 �175��
Class MemberQueryCollection	� GOTOBUTTON _Toc410087862 � PAGEREF _Toc410087862 �176��
Class MessageCollection	� GOTOBUTTON _Toc410087863 � PAGEREF _Toc410087863 �177��
Class ParameterHolderCollection	� GOTOBUTTON _Toc410087864 � PAGEREF _Toc410087864 �178��
Class PropertyCollection	� GOTOBUTTON _Toc410087865 � PAGEREF _Toc410087865 �179��
Class SchemaCollection	� GOTOBUTTON _Toc410087866 � PAGEREF _Toc410087866 �180��
Class ValueDescriptorCollection	� GOTOBUTTON _Toc410087867 � PAGEREF _Toc410087867 �181��
��TABLE OF FIGURES
� TOC \c "Figure" �Figure 2-1 - Catch block that walks an error stack	� GOTOBUTTON _Toc410087452 � PAGEREF _Toc410087452 �4��
Figure 2-2 - Selection of the Acme driver to open a connection to a schema	� GOTOBUTTON _Toc410087453 � PAGEREF _Toc410087453 �5��
Figure 2-3 - List of collection classes	� GOTOBUTTON _Toc410087454 � PAGEREF _Toc410087454 �6��
��Preface
This document specifies the On-Line Analytical Processing (OLAP) Application Program Interface (API), Version 2.0. The Multi-Dimensional API (MDAPI TM) is a public, nonproprietary specification published by the OLAP Council, a not-for-profit association of vendors of multidimensional database software.
Scope
The Version 2.0 MDAPI TM provides applications with read-only access to OLAP multidimensional databases. This version provides
Server connection and login capabilities
Metadata functions
Filter, sort, and cube definition functions
Data fetch functions
Error handling
The API also supports the pass-through of vendor-specific extensions. Future versions of this specification will support additional capabilities.
About this document
The Version 2 MDAPI TM is an object-oriented API. OLAP objects such as cubes, hierarchies, and dimensions are represented as classes. The model was designed using the Unified Modeling Language (UML), a language-neutral object modeling language that is in common use. A separate document, the MDAPI Programmer’s Guide, describes the API in terms of model elements such as classes, attributes, associations, and methods. This document is a reference guide for Java programmers.
Most of this document describes the interfaces and classes that implement the API. For most interfaces and classes, the following information is shown:
A declaration of the class
A description of the class which discusses its purpose and usage.
A list of any methods of the class, followed by a description of each method. Methods are listed with a calling sequence in the form return-type method-name(parameter-1-type parameter-1-symbolic-name, parameter-2-type parameter-2-symbolic-name,…,parameter-n-type parameter-n-symbolic-name). The descriptive information that is shown for a method is described below.
The following information is shown for methods:
A declaration of the method
A description of the method which discusses its purpose and usage. This may include descriptions of errors that may be signaled by the method.
A table that shows the calling parameters for the method. A type, symbolic name, and brief description are shown for each parameter.
The type of object that the method returns.
A list of exceptions that the method may raise.
A description of pre-conditions that must be satisfied if the method is to execute successfully.
A description of post-conditions that describe any side effects of invoking the method.
Organization of this document
Chapter 1 is an introduction to the Java implementation of the MDAPI.
Chapter 2 discusses environmental considerations for Java. This includes such language-specific matters as the representation of collections and error handling.
Chapter 3 discusses enumerations used in the API.
Chapter 4 describes most of the classes that constitute the API, based on the MDAPI object model.
Chapter 5 describes the Java implementation of the collection classes.
�Introduction
The world-wide web has revolutionized the way people use computers. The simplicity and intuitive appeal of the Hyper-Text Markup Language (HTML) has made it easier for anyone to use a computer to access information. An enormous amount of material has been ‘published’ for use by anyone with access to the Internet and a browser.
The technology behind the web has also revolutionized the way businesses use computers. To bring the benefits of the web to bear on their daily operations without compromising security, businesses have created intranets. Instead of printing and distributing reports, companies create web pages.
The second wave of the web is now upon us. The two-tier, thick-client applications that constitute the bulk of corporate query and reporting tools are being replaced by multi-tier applications for which a browser is the only necessary client. Applications that once had to be deployed within a corporate network because of their hefty client-side software requirements can now be easily used on the open Internet. Personal computers, which have grown enormously in cost and complexity, are being replaced by inexpensive, simple Network Computers. Over the next few years, web-enabled appliances will become cheap and pervasive, allowing nearly universal access to web-based applications such as banking and on-line shopping.
The first wave of the web revolution was driven by HTML. But the second wave is driven by Java. Java is the lingua franca of web-enabled applications. Java’s characteristics make it nearly a perfect fit for the web:
Java is portable. An application can be written once and run on nearly any computer.
Java applications can be easily distributed. Java has embedded support for locating classes over a network and downloading them.
Java is secure. It has embedded features that help protect against the danger of running code that has been downloaded from the Internet.
Java fits well with existing web sites. HTML tags can specify Java applets, which are run when a user activates a hyper-text link.
Java is universal. Java Virtual Machines are available for almost all computers in common use today, and all of the popular web browsers embed JVMs.
Java code is easy to write. Because Java is object-oriented, programs fit their application domains easily and naturally. Because Java uses a garbage collection memory-management scheme, programmers are freed from worrying about allocating and freeing storage.
Java is also a great fit for the MDAPI. Because Java is object-oriented, it naturally represents the classes and interfaces that constitute the API.
�Environmental Considerations
The MDAPI object model represents a fairly high-level view of the API. Although it is precise about the nature of the objects that constitute the model and the relationships between them, it does not address the low-level details that allow a programmer to develop an application. The model cannot be specific about these details, because the model has to apply to a variety of programming languages, and the details are specific to a particular language.
This chapter describes in general terms the techniques that were used to map the MDAPI object model to Java. The reference that follows describes the Java classes, attributes, and methods that constitute the Java implementation of the MDAPI in detail. But an understanding of the approach will help you conceptualize the API in a way that will make its use easier and more intuitive.
Parameter passing
Java methods take zero or more parameters, and return one value. All method arguments are input parameters, and the return value is the only output parameter. It is not possible to write a Java method that returns multiple parameters, such as a status code and an object.
For a Java method to return more than one value, it has to accept a ‘holder’ class as an argument. As its name implies, a holder class holds something else. The holder class can be an input parameter, and the method can set the object which is held. For instance, a method that returns an Dimension might accept as an argument an DimensionHolder object. The method would set attribute DimensionHolder::dimension, which would then be retrieved by the caller.
However, the MDAPI has been designed so that there are no methods that return multiple output parameters. Therefore, the MDAPI uses no ‘holder’ classes.
Error handling
Error handing is one of Java’s fortes. Java provides an implementation of structured exception handing that is both sophisticated and elegant. Like C++, Java supports try, catch, and finally blocks that allow a program to catch and handle exceptions. Java also provides a throw statement that allows a program to raise an exception.
In Java, exceptions are first-class objects. A Java program can build its own set of exception classes, which can provide application-specific information to exception handlers. This allows an application to essentially build its own customized exception handling facility.
Java MDAPI methods always raise exceptions to indicate that an error has occurred. No methods return status or error codes. If an error occurs in an MDAPI method call, the method raises exception OLAPException. The OLAPException class includes a messages attribute, which is a collection of Message objects. Each Message object has its own set of status codes and a textual message. The MDAPI adds error information at each level of the call stack as it unwinds after an error. The error stack that represents a server-side error is returned to the client, which may add its own errors. This allows a caller to decipher the cause and all effects of an error.

public void someFunction(){
	try{
		 cube.validate();
	}
	catch(OLAPException e){
		// get the collection of messages
		MessageCollection messages = e.getMessages();
		Message message = null;
		// enumerate through the stack of messages
		// and print each one
		for(int i=0; i<messages.size; ++i){
			message = messages.messageAt(i);
			System.out.println(message.getMessage());
		}
	}
	return;
}
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC \r 1 �1� - Catch block that walks an error stack

Multi-vendor support
The MDAPI is principally a specification. The OLAP Council publishes the specification, but it does not provide an implementation of the MDAPI. The OLAP vendors that are the members of the OLAP Council provide implementations of the MDAPI. A particular client may use more than one client’s implementation of the MDAPI, perhaps concurrently.
Vendors may add proprietary extensions to the MDAPI to allow applications to use specialized features of that vendor’s products, or to address perceived limitations in the API. So a particular implementation of the MDAPI may somewhat enhance the specification.
The need to support multiple implementations of the same API, and to support extensions to the API that vary from vendor to vendor, is an unusual one. Fortunately, Java provides a good answer. Almost all of the objects described in this reference are Java interfaces. An interface is somewhat like an abstract class, except that a class implements an interface rather than extending it, as it would another class. By specifying the MDAPI as a set of interfaces, the OLAP Council allows vendors the necessary flexibility to implement the API.
Consider the Dimension object as an example of how this is done. The MDAPI specification describes this object as public interface Dimension. A vendor would provide a class declared as public class AcmeDimension implements Dimension.
There are a handful of classes that were written by the OLAP Council and are provided with all vendors’ implementations. These are used to ‘bootstrap’ the API so that an application can discover which implementations are available, and are described in the next section, � REF _Ref401161085 * MERGEFORMAT �Session�.
Session
An application uses the Session class to get started with the MDAPI. Session is one of only a few true Java classes in the MDAPI specification (most are interfaces). All of its variables and methods are static, so it cannot be instantiated.
The Session class has methods that allow an application to discover which implementations are installed on a particular machine, and to load a vendor-specific class with which the application can begin using a chosen implementation.

public Connection openAcmeConnectionBySchemaName(String schemaName, String authenticationString) throws NoConnectionException {
	Conection connection = null;
	// get the driver object
	Driver acmeDriver = Session.getDriverByName("AcmeOLAPDriver");

	// open the connection
	try{
 connection = acmeDriver.openConnection(schemaName,authenticationString);
	}
	catch(Exception e){
	 throw new NoConnectionException("no connection available");
 }

	return connection;
}
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC �2� - Selection of the Acme driver to open a connection to a schema

Collections
Many OLAP objects have relationships to a number of other objects. For instance, a Dimension may have a number of Hierarchies. Relationships like this are represented in the model as a one-to-many relationship.
Applications need to be able to navigate these relationships for purposes such as metadata discovery. Applications have to be able to find out how may related objects there are, to enumerate the objects, and to get an object by specifying its index.
The Java implementation of the MDAPI represents one-to-many relationships as collection classes. The collection object provides an integral count attribute and a byIndex() method. This simplifies the API by consolidating methods that would otherwise be duplicated in many classes, and encourages reuse.
The Java implementations of the MDAPI collection classes are just simple classes with methods that represent the various count and get operations. There is a distinct collection class for each class that is the target of a one-to-many relationship.

CellCollection
ConnectionCollection
CellCollection
DimensionCollection
DriverCollection
EdgeBufferCollection
EdgeCellCollection
EdgeLayerCollection
HierarchyCollection
LanguageCollection
LevelCollection
MemberQueryCollection
MessageCollection
ParameterHolderCollection
PropertyCollection
SchemaCollection
ValueDescriptorCollection

Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC �3� - List of collection classes

Enumerations
Java has no inherent support for enumeration types. Each enumeration from the MDAPI object model is represented in Java as a final class with a static final class variable for each enumeration value.
Any
A number of MDAPI objects have to be able to refer to an object that may be any one of several different types. After validation, the Cube object has a collection of cell values that may be of different types. The ParameterHolder class has a ‘value’ attribute with a type that can vary.
The Any Java class is used to represent values of type Any. Each instance of Any has a data type which is a value of the enumeration DataType. The Any class has a type() method with which a caller can find the data type of an object. It also has an extract method for each DataType with which a caller can get the value of a basic Java type from the object. The extract methods raise exceptions if they are called for an object of the wrong type. Any also has an insert method for each DataType with which a caller can set the type and value of an Any object.
Collection classes can be instantiated directly, and are provided by the OLAP Council. This allows code that instantiates these classes to remain independent of a particular vendor’s implementation.
An Any object may represent a value that is missing. The getMissing() method returns true if the value is missing. The extract methods raise an exception if they are called for an object whose value is missing.
Attributes
Java classes can have data fields that resemble the UML attributes in the MDAPI object model. However, most of the MDAPI attributes are read-only for application developers, and Java does not provide a way to indicate that a data field is read-only.
Therefore, in most cases, the Java implementation represents MDAPI attributes as protected fields, disallowing direct access by applications. The class provides a ‘get’ accessor method with which a caller can find the value of an attribute.�Enumerations
This section is a reference that describes all of the enumerations used by the API. It is arranged by category.
Enumerations are represented as final classes with a static final class variable for each enumeration value.
Query
Class SortOrder
public class SortOrder
SortOrder is an enumeration of the possible sorting orders
Enumeration Values
final public static SortOrder ASCENDING = new SortOrder(0);�final public static SortOrder DESCENDING = new SortOrder(1);�
Methods
public int getSortOrder();�public static SortOrder from_int(int value);

Meaning
ASCENDING	Sort in ascending order. For a hierarchical sort, parents follow children.
DESCENDING	Sort in descending order. For a hierarchical sort, parents precede children.

Class QueryStatus
public class QueryStatus
QueryStatus is an enumeration class representing the set of all possible states of a Cube or MemberQuery.
Enumeration Values
final public static QueryStatus VALIDATED = new QueryStatus(0);�final public static QueryStatus VALIDATING = new QueryStatus(1);�final public static QueryStatus MODIFIED = new QueryStatus(2);�final public static QueryStatus INITIAL = new QueryStatus(3);�
Methods
public int getQueryStatus();�public static QueryStatus from_int(int value);

Meaning
VALIDATED	The query has been validated, so data can be fetched. It has not been modified since then.
VALIDATING	The query is currently being validated asynchronously. The only operation valid on the query at this time is getStatus() - all other operations will raise an exception.
MODIFIED	The query has been modified in some way since it was last validated. Data may be fetched, but it will not necessarily correspond to the current definition.
INITIAL	The query has not yet been validated. Data may not be fetched.

Class InitialSelection
public class InitialSelection
InitialSelection is an enumeration class that represents whether a MemberSet initially includes all of the members from its creating scope of none of the members.
Enumeration Values
final public static InitialSelection ALL = new InitialSelection(0);�final public static InitialSelection NONE = new InitialSelection(1);�
Methods
public int getInitialSelection();�public static InitialSelection from_int(int value);

Meaning
ALL	The query should initially contain all of the members from the creating scope.
NONE	The query should initially be empty.

�AsynchronousSupport
Class ProgressStatus
public class ProgressStatus
ProgressStatus is an enumeration class representing the set of all possible states of a ProgressMonitor.
Enumeration Values
final public static ProgressStatus OPERATION_CANCELED = new ProgressStatus(0);�final public static ProgressStatus OPERATION_COMPLETED = new ProgressStatus(1);�final public static ProgressStatus OPERATION_ERROR = new ProgressStatus(2);�final public static ProgressStatus OPERATION_IN_PROGRESS = new ProgressStatus(3);�
Methods
public int getProgressStatus();�public static ProgressStatus from_int(int value);

Meaning
OPERATION_CANCELED	The asynchronous operation has been canceled.
OPERATION_COMPLETED	The asynchronous operation has completed.
OPERATION_ERROR	An error occurred during the performance of the asynchronous operation.
OPERATION_IN_PROGRESS	The asynchronous operation is in progress.

�Common
Class ErrorCode
public class ErrorCode
ErrorCode is an enumeration of the standard MDAPI status codes.
Enumeration Values
final public static ErrorCode INVALID_INDEX = new ErrorCode(0);�final public static ErrorCode SERVER_ERROR = new ErrorCode(1);�final public static ErrorCode WRONG_DIMENSIONALITY = new ErrorCode(2);�final public static ErrorCode BUFFER_AT_END = new ErrorCode(3);�final public static ErrorCode INVALID_VERTEX_SIZE = new ErrorCode(4);�final public static ErrorCode INVALID_INDICES = new ErrorCode(5);�final public static ErrorCode NOT_VALIDATED = new ErrorCode(6);�final public static ErrorCode DATATYPE_MISMATCH = new ErrorCode(7);�final public static ErrorCode BUFFER_INVALID = new ErrorCode(8);�final public static ErrorCode ASYNCHRONOUS_ERROR = new ErrorCode(9);�final public static ErrorCode OPERATION_COMPLETED = new ErrorCode(10);�final public static ErrorCode BUSY = new ErrorCode(11);�final public static ErrorCode OPERATION_CANCELED = new ErrorCode(12);�final public static ErrorCode INVALID_PROPERTY = new ErrorCode(13);�final public static ErrorCode CONNECTION_CLOSED = new ErrorCode(14);�final public static ErrorCode EDGE_ERROR = new ErrorCode(15);�final public static ErrorCode DIFFERENT_CONNECTION = new ErrorCode(16);�final public static ErrorCode EXPRESSION_TYPE_ERROR = new ErrorCode(17);�final public static ErrorCode NAME_IN_USE = new ErrorCode(18);�final public static ErrorCode INCOMPATIBLE_EXPRESSION = new ErrorCode(19);�final public static ErrorCode MISSING = new ErrorCode(20);�final public static ErrorCode INDEX_OUT_OF_BOUNDS = new ErrorCode(21);�final public static ErrorCode NOT_IN_COLLECTION = new ErrorCode(22);�
Methods
public int getErrorCode();�public static ErrorCode from_int(int value);

Meaning
INVALID_INDEX	An index was out of range
SERVER_ERROR	Non-MDAPI error; refer to the nativeCode status value.�
WRONG_DIMENSIONALITY	The dimensions of a parameter are invalid or inconsistent with either another parameter or the object against which the method is invoked.
BUFFER_AT_END	The current cell position in the edge is already at an end of the cells in the buffer.
INVALID_VERTEX_SIZE	Too few or too many indices were specified in a vertex
INVALID_INDICES	An end index is smaller than the corresponding start index
NOT_VALIDATED	An operation that can be used only on a validated query was invoked on a query that has not been validated
DATATYPE_MISMATCH	The datatype of one or more cells does not match the datatype of the buffer extract method
BUFFER_INVALID	The buffer is invalid because the cube has been modified and revalidated.
ASYNCHRONOUS_ERROR	An error occurred during the execution of an asynchronous operation.
OPERATION_COMPLETED	An attempt to cancel an asynchronous operation failed because the operation had already completed.
BUSY	One of the objects involved in the operation is currently involved in an asynchronous operation and cannot be accessed.
OPERATION_CANCELED	An asynchronous operation was canceled.
INVALID_PROPERTY	The Property supplied is not defined for the receiver.
CONNECTION_CLOSED	Objects belonging to a Connection that has closed are being used.
EDGE_ERROR	The proposed operation cannot complete because an error associated with a CubeEdge has occurred.
DIFFERENT_CONNECTION	Objects belonging to different Connections are being combined.
EXPRESSION_TYPE_ERROR	A supplied ValueExpression has an invalid DataType for the operation being performed.
NAME_IN_USE	An attempt to create a new object failed because the supplied name was already in use.
INCOMPATIBLE_EXPRESSION	The supplied ValueExpression is not valid for the object with which it was used.
MISSING	The value is missing
INDEX_OUT_OF_BOUNDS	The index is greater than the zero-based index of the last element in the collection.
NOT_IN_COLLECTION	The specified object is not in the collection.

Class SeverityCode
public class SeverityCode
SeverityCode is an enumeration of the standard MDAPI error severity codes.
Enumeration Values
final public static SeverityCode SEVERITY_ERROR = new SeverityCode(0);�final public static SeverityCode SEVERITY_SEVERE_ERROR = new SeverityCode(1);�final public static SeverityCode SEVERITY_FATAL_ERROR = new SeverityCode(2);�
Methods
public int getSeverityCode();�public static SeverityCode from_int(int value);

Meaning
SEVERITY_ERROR	The operation failed because the parameters were invalid or inconsistent parameters or one or more of the objects was not in the appropriate state.
SEVERITY_SEVERE_ERROR	The operation failed because of an internal error.
SEVERITY_FATAL_ERROR	The operation failed because of an internal error. The connection and all associated objects are invalid.

�MetaData
Class HierarchyDirection
public class HierarchyDirection
HierarchyDirection enumerates the options for specifying direction within a hierarchy.
Enumeration Values
final public static HierarchyDirection HEIGHT = new HierarchyDirection(0);�final public static HierarchyDirection DEPTH = new HierarchyDirection(1);�
Methods
public int getHierarchyDirection();�public static HierarchyDirection from_int(int value);

Meaning
HEIGHT	The direction is "up" the hierarchy from the leaves.
DEPTH	The direction is "down" the hierarchy from the root.

Class DimensionType
public class DimensionType
Enumeration of the types of dimensions recognized by the MDAPI.
Enumeration Values
final public static DimensionType MEASURE_DIMENSION = new DimensionType(0);�final public static DimensionType OTHER_DIMENSION = new DimensionType(1);�final public static DimensionType TIME_DIMENSION = new DimensionType(2);�
Methods
public int getDimensionType();�public static DimensionType from_int(int value);

Meaning
MEASURE_DIMENSION	The Dimension is a set of measures.
OTHER_DIMENSION	The Dimension is neither a measure dimension nor a time dimension..
TIME_DIMENSION	The Dimension is a time dimension

Class MemberRelation
public class MemberRelation
MemberRelation enumerates the possible sets of hierarchically related members that may be specified in API calls.
Enumeration Values
final public static MemberRelation ROOT = new MemberRelation(0);�final public static MemberRelation PARENT = new MemberRelation(1);�final public static MemberRelation CHILDREN = new MemberRelation(2);�final public static MemberRelation SIBLINGS = new MemberRelation(3);�final public static MemberRelation ANTECEDENTS = new MemberRelation(4);�final public static MemberRelation DESCENDANTS = new MemberRelation(5);�
Methods
public int getMemberRelation();�public static MemberRelation from_int(int value);

Meaning
ROOT	The top of the hierarchy. Roots have no parents.
PARENT	The parent of a given member in the hierarchy. Each member has at most one parent.
CHILDREN	The children of member m are the members of the hierarchy that have m as their parent.
SIBLINGS	The siblings of member m are the members of the hierarchy that have m.parent as their parent.
ANTECEDENTS	The antecedents of member m are the members of the hierarchy that can be reached by following successive parent links from m up the hierarchy.
DESCENDANTS	The descendants of member m are the members that can be reached by following successive child links from m down the hierarchy.

Class DataType
public class DataType
This class enumerates the data types supported by the MDAPI, for use in identifying the data types that may be retrieved from cube cells, user-defined properties, and specified for use in filters.
Enumeration Values
final public static DataType DOUBLE = new DataType(0);�final public static DataType FLOAT = new DataType(1);�final public static DataType LONG = new DataType(2);�final public static DataType TEXT = new DataType(3);�final public static DataType BOOLEAN = new DataType(4);�final public static DataType DATE = new DataType(5);�
Methods
public int getDataType();�public static DataType from_int(int value);

Meaning
DOUBLE	A double-precision, eight-byte, floating point number.
FLOAT	A single-precision, four-byte, floating point number.
LONG	A four-byte integer
TEXT	A string of characters.
BOOLEAN	A logical boolean value, capable of expressing the values True and False
DATE	A calendar date

�Classes
This section is a reference that describes all of the MDAPI classes and methods except the Collection classes. Collection classes are described in Chapter � REF _Ref410002905 \n �5�. Classes are arranged alphabetically.
�Interface Any
public interface Any
Any is a single data type which may be used to represent data values of any primitive data type recognized by the MDAPI.
Collection classes can be instantiated directly, and are provided by the OLAP Council. This allows code that instantiates these classes to remain independent of a particular vendor’s implementation.

Methods
public Any(double val)�public Any(float val)�public Any(long val)�public Any(string val)�public Any(java.lang.date val)�public Any(boolean val)�public DataType getType();�public double doubleValue() throws Exception;�public float floatValue() throws Exception;�public long longValue() throws Exception;�public java.lang.String stringValue() throws Exception;�public java.util.Date dateValue() throws Exception;�public boolean booleanValue() throws Exception;�public String toString();�
Method Any::Any
public Any Any(double val) throws OLAPException;
A constructor that creates an Any of type DOUBLE and sets its value.
Parameters
Type		Name		Description 		
double	val	The double-precision floating-point number to which to set the value of the object.
Returns
Any

Possible Exceptions
OLAPException

Method Any::Any
public Any Any(float val) throws OLAPException;
A constructor that creates an Any of type FLOAT and sets its value.
Parameters
Type		Name		Description 		
float	val	The single-precision floating-point number to which to set the value of the object.
Returns
Any

Possible Exceptions
OLAPException

Method Any::Any
public Any Any(long val) throws OLAPException;
A constructor that creates an Any of type LONG and sets its value.
Parameters
Type		Name		Description 		
long	val	The long (32-bit) integer to which to set the value of the object.
Returns
Any

Possible Exceptions
OLAPException

Method Any::Any
public Any Any(java.lang.String val) throws OLAPException;
A constructor that creates an Any of type TEXT and sets its value.
Parameters
Type		Name		Description 		
java.lang.String	val	The string to which to set the value of the object.
Returns
Any

Possible Exceptions
OLAPException

Method Any::Any
public Any Any(java.util.Date val) throws OLAPException;
A constructor that creates an Any of type DATE and sets its value.
Parameters
Type		Name		Description 		
java.util.Date	val	The date to which to set the value of the object.
Returns
Any

Possible Exceptions
OLAPException

Method Any::Any
public Any Any(boolean val) throws OLAPException;
A constructor that creates an Any of type BOOLEAN and sets its value.
Parameters
Type		Name		Description 		
boolean	val	The boolean to which to set the value of the object.
Returns
Any

Possible Exceptions
OLAPException

Method Any::getType
public DataType getType();
Get the data type of the object.
Returns
DataType

Method Any::getMissing
public boolean getMissing();
Returns true if the value of the object is missing; otherwise returns false.
Returns
DataType

Method Any::doubleValue
public double Any::doubleValue() throws OLAPException;
If the datatype of the Any is DOUBLE, doubleValue returns the value.��Possible error codes include:�DATATYPE_MISMATCH	The datatype of the object is not DOUBLE�MISSING	The value of the object is missing
Returns
double

Possible Exceptions
OLAPException

Method Any::floatValue
public float Any::floatValue() throws OLAPException;
If the datatype of the Any is FLOAT, floatValue returns the value.��Possible error codes include:�DATATYPE_MISMATCH	The datatype of the object is not FLOAT�MISSING	The value of the object is missing
Returns
float

Possible Exceptions
OLAPException

Method Any:: longValue
public long Any::longValue() throws OLAPException;
If the datatype of the Any is LONG, longValue returns the value.��Possible error codes include:�DATATYPE_MISMATCH	The datatype of the object is not LONG�MISSING	The value of the object is missing
Returns
long

Possible Exceptions
OLAPException

Method Any:: stringValue
public java.lang.String Any::stringValue() throws OLAPException;
If the datatype of the Any is TEXT, stringValue returns the value.��Possible error codes include:�DATATYPE_MISMATCH	The datatype of the object is not TEXT�MISSING	The value of the object is missing
Returns
java.lang.String

Possible Exceptions
OLAPException

Method Any::dateValue
public java.util.Date Any::dateValue() throws OLAPException;
If the datatype of the Any is DATE, dateValue returns the value.��Possible error codes include:�DATATYPE_MISMATCH	The datatype of the object is not DATE�MISSING	The value of the object is missing
Returns
java.util.Date

Possible Exceptions
OLAPException

Method Any:: booleanValue
public boolean Any::booleanValue() throws OLAPException;
If the datatype of the Any is BOOLEAN, booleanValue returns the value.��Possible error codes include:�DATATYPE_MISMATCH	The datatype of the object is not BOOLEAN�MISSING	The value of the object is missing
Returns
boolean

Possible Exceptions
OLAPException

Method Any:: toString
public String Any::toString();
Overrides java.lang.Object::toString(). Returns the value as a String.
Returns
java.lang.String
�Interface Buffer
public interface Buffer

A Buffer represents a portion of a validated query that has been retrieved. The Buffer classes provide methods that facilitate navigating the data.��Typically, after creating or modifying a query and validating it, an application will call Cube::newBuffer. The application indicates its area of immediate interest, and the MDAPI downloads all necessary data.��A Buffer can be created only from a validated cube. It then remains valid until the cube is again validated. This allows an application to continue to retrieve data from a buffer while modifying a query.��The Buffer classes can be used in either of two ways:��1) By 'stepping' through the data, calling EdgeBuffer::next() and EdgeBuffer::previous(). These methods manage a set of current cells, one for each dimension and one for the data values can then be extracted from the current cell by calling Cell::getValue and specifying a ValueDescriptor.��2) By explicitly extracting specified ranges of cells from the buffer. An application can extract a set of cells, and then extract values from them by calling Cell::getValue. Or, an application can call methods to directly get native values from the buffer.�

Methods
public long getExtent();�public long getValuesCount();�public EdgeBufferCollection getEdgeBuffers();�public Cube getCube();�public Cell getCurrentCell();�public CellCollection getCells(long[] start, long[] end) throws OLAPException;�public void getCellsFloat(long[] start, long[] end, ValueDescriptor valueType, float[] values) throws OLAPException;�public void getCellsDouble(long[] start, long[] end, ValueDescriptor valueType, double[] values) throws OLAPException;�public void getCellsText(long[] start, long[] end, ValueDescriptor valueType, String[] values) throws OLAPException;�public void getCellsLong(long[] start, long[] end, ValueDescriptor valueType, long[] values) throws OLAPException;�public void getCellsDate(long[] start, long[] end, ValueDescriptor valueType, java.util.Date[] values) throws OLAPException;�public void getCellsBool(long[] start, long[] end, ValueDescriptor valueType, boolean[] values) throws OLAPException;

Method Buffer::getExtent
public long getExtent();

Get the number of data cells in the buffer. This is the product of the extents of all of the edge buffers.

Method Buffer::getValuesCount
public long getValuesCount();

Get the number of values available in each data cell of the buffer.

Method Buffer::getEdgeBuffers
public EdgeBufferCollection getEdgeBuffers();

Get an ordered collection of EdgeBuffers, one for each edge of the query. The order mirrors the order of the collection of CubeEdges for the Cube.

Method Buffer::getCube
public Cube getCube();

Get the Cube from which the buffer was created.

Method Buffer::getCurrentCell
public Cell getCurrentCell();

Get the current data cell for the buffer. After creating a Buffer, the currentCell is set to the cell at the origin of the buffer. It is changed by calling EdgeBuffer::next, EdgeBuffer::previous, or EdgeBuffer::setIndex().

Method Buffer::getCells
public CellCollection getCells(long[] start, long[] end) throws OLAPException;

Extracts a collection of data cells from a Buffer.��The collection is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and the order of the cells in the collection.��Possible error codes include:�BUFFER_INVALID - the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.
long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract

Returns
CellCollection

Possible Exceptions
OLAPException

Method Buffer::getCellsFloat
public void getCellsFloat(long[] start, long[] end, ValueDescriptor valueType, float[] values) throws OLAPException;

Fills an array of single-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.
long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
float[]	values	The array of single-precision floating-point numbers to fill.

Returns
void

Possible Exceptions
OLAPException

Method Buffer::getCellsDouble
public void getCellsDouble(long[] start, long[] end, ValueDescriptor valueType, double[] values) throws OLAPException;

Fills an array of double-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'double'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.
long[]	end	An array of consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
double[]	values	The array of double-precision floating-point numbers to fill.

Returns
void

Possible Exceptions
OLAPException

Method Buffer::getCellsText
public void getCellsText(long[] start, long[] end, ValueDescriptor valueType, String[] values) throws OLAPException;

Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'text'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.
long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
String[]	values	The array of strings to fill.

Returns
void

Possible Exceptions
OLAPException

Method Buffer::getCellsLong
public void getCellsLong(long[] start, long[] end, ValueDescriptor valueType, long[] values) throws OLAPException;

Fills an array of longs representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'long'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.
long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
long[]	values	The array of longs to fill.

Returns
void

Possible Exceptions
OLAPException

Method Buffer::getCellsDate
public void getCellsDate(long[] start, long[] end, ValueDescriptor valueType, java.util.Date[] values) throws OLAPException;

Fills an array of Dates representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'date'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long[]	start	An array consisting of a zero-based index index into each of the edges that marks the starting vertex of the cells to extract.
long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
java.util.Date[]	values	The array of dates to fill.

Returns
void

Possible Exceptions
OLAPException

Method Buffer::getCellsBool
public void getCellsBool(long[] start, long[] end, ValueDescriptor valueType, boolean[] values) throws OLAPException;

Fills an array of booleans representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'boolean'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long[]	start	An array consisting of a zero-based index into each of the edges that marks the starting vertex of the cells to extract.
long[]	end	An array consisting of a zero-based index into each of the edges that marks the ending vertex of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
boolean[]	values	The array of booleans to fill.

Returns
void

Possible Exceptions
OLAPException

�Interface Cell
public interface Cell

A Cell represents the contents of a single cell of data. Logically, there is a Cell for each data cell in the buffer. The MDAPI does not represent the collection of Cells for a Buffer, but instead relies on methods on Buffer to obtain Cells. This allows implementations to efficiently represent these collections, which may be sparse.��A cell may contain values for more than one value type. For instance, a cell may contain both a numeric value for a measure, used for calculations, and a formatted string, used for display. This is represented by an association with a number of OLAPAny objects, qualified by the ValueDescriptor for the corresponding ValueType.

Methods
public OLAPAny getValue(ValueDescriptor valueType);�

Method Cell::getValue
public OLAPAny getValue(ValueDescriptor valueType);

Get the value of the cell for the specified value descriptor.

Parameters
Type		Name		Description 		
ValueDescriptor 	valueType	
�Interface Connection
public interface Connection extends PropertyScope

The Connection class has three different duties in the MDAPI. Its first role is to represent a connection between a client of the MDAPI and a data source. To this end it contains operations to manage and close the connection. Its second role is to act as the root object for all metadata navigation within the data source. Its third role is to describe the capabilities and policies of the data source and the server.��All objects obtained through a Connection are valid only within the context of that Connection. In particular, any attempt to mix objects obtained from different Connections is considered an error and will cause an exception to be raised. Moreover, all objects obtained from a Connection become invalid once that connection is closed. Any attempt to use these objects will result in an exception.��Instances of Connection can be thought of as "hypercubes": the connection is made up of a number of "dimensions", one (and only one) of which is the "measures dimension". A "cell" is defined by a combination of one "member" from each dimension. Each cell contains a number of values, distinguished by "value descriptors". An application can navigate to any of these objects from the Connection.��Connection is a subtype of PropertyScope. Any properties contained in the properties collection attached to the connection are valid for all members of all dimensions contained in the connection. Each Connection must contain at least two Properties, "name" and "caption".

Methods
public long getMaxEdges();�public long getMinEdges();�public Language getLanguage();�public void setLanguage(Language value);�public LanguageCollection getSupportedLanguages();�public Session getSession();�public Dimension getMeasureDimension();�public DimensionCollection getDimensions();�public ValueDescriptorCollection getDescriptors();�public ValueDescriptor getDefaultDescriptor();�public Property getDefaultProperty();�public Cube newCube(String name, long numEdges, InitialSelection initialSelection) throws OLAPException;�public void closeConnection() throws OLAPException;

Method Connection::getMaxEdges
public long getMaxEdges();

Get the maximum number of edges that a cube can have.��Invariants:�(1) maxEdges >= minEdges�(2) maxEdges >=3

Method Connection::getMinEdges
public long getMinEdges();

Get the minimum number of edges that a cube can have.��Invariants:�(1) minEdges <= maxEdges�(2) minEdges <=3

Method Connection::getLanguage
public Language getLanguage();

Get the default language for error messages produced in the domain of the Connection.

Method Connection::setLanguage
public void setLanguage(Language value);

Set the default language for error messages produced in the domain of the Connection.

Method Connection::getSupportedLanguages
public LanguageCollection getSupportedLanguages();

Get the list of languages supported by the Connection.

Method Connection::getSession
public Session getSession();

Get the instance of Session to which the connection is attached

Method Connection::getMeasureDimension
public Dimension getMeasureDimension();

Get the unique instance of Dimension representing the measure dimension.

Method Connection::getDimensions
public DimensionCollection getDimensions();

Get the dimensions of the connection.

Method Connection::getDescriptors
public ValueDescriptorCollection getDescriptors();

Get the set of all ValueDescriptors defining cell and property values for the Connection.

Method Connection::getDefaultDescriptor
public ValueDescriptor getDefaultDescriptor();

Get the default descriptor. This is the distinguished instance of ValueDescriptor with the name "value" that defines the default value for each Measure and Property. Whenever a Cube or MemberQuery is created, it will be associated with this instance of ValueDescriptor by default.

Method Connection::getDefaultProperty
public Property getDefaultProperty();

Get the default property. This is the distinguished instance of Property with the name "name" that defines the default property for each PropertyScope. Whenever a MemberQuery is created, it will be associated with this instance of Property by default.

Method Connection::newCube
public Cube newCube(String name, long numEdges, InitialSelection initialSelection) throws OLAPException;

Creates a new Cube object on the connection with the specified number of edges. A MemberQuery instance will be created for each of the dimensions of the Connection. Each MemberQuery will be oriented on one of the edges. This initial orientation is vendor-specific, and may be discovered by examining the cube.��The new cube's lifetime will not extend past that of the connection.��Possible error codes include:�EDGE_ERROR		The given number of edges is invalid.�
Parameters
Type		Name		Description 		
String	name	Name for the cube. The MDAPI does not use this name in any way.
long	numEdges	The initial number of edges on the cube.
InitialSelection	initialSelection	If ALL, each MemberQuery instance initially contains all of the members of its dimension. If NONE, the MemberQuery instances are initially empty.

Returns
Cube

Possible Exceptions
OLAPException

Method Connection::closeConnection
public void closeConnection() throws OLAPException;

Immediately closes the connection, releasing any connection thread opened by Session::openConnection(). All resources allocated to that thread (including all metadata, query objects, and cube views) are released by the Connection object.��After this method is called, the object cannot be used again. ��Possible error codes include:�CONNECTION_CLOSED	The connection has already been closed.�
Returns
void

Possible Exceptions
OLAPException

�Interface Cube
public interface Cube

A Cube represents a query definition and, following validation, a result set. It holds both query definition information in the form of MemberQueries, and result information. A cube may be in an invalidated state or a validated state. When invalidated, calling the getCell() method on a cube or some methods of the CubeEdge will fail. When a cube is first created, it is in an invalidated state. It will also become invalid for the purposes of fetching member information and cell data from it whenever its query definition is modified. Successful execution of the validate() call is required to put the cube in a validated state.��Dimensions are oriented onto the cube's associated CubeEdge objects; each dimension is mapped to only one edge of the cube.���

Methods
public String getName();�public void setName(String value);�public CubeEdgeCollection getEdges();�public ValueDescriptorCollection getDescriptors();�public void pivot(Dimension dimension, CubeEdge toEdge, Dimension beforeDim) throws OLAPException;�public void rotate(Dimension dim1, Dimension dim2) throws OLAPException;�public void setContext(MemberCollection cellRef, HierarchyCollection hiers) throws OLAPException;�public void setOrientation(CubeEdge edge, DimensionCollection dimensions) throws OLAPException;�public void validate() throws OLAPException;�public ProgressMonitor validateAsync() throws OLAPException;�public OLAPAny getCell(long[] coordinates, ValueDescriptor descriptor) throws OLAPException;�public Cube clone() throws OLAPException;�public Buffer newBuffer(long[] start, long[] end) throws OLAPException;�public CubeEdge createEdge() throws OLAPException;�public void removeEdge(CubeEdge edge) throws OLAPException;�public void addDescriptor(ValueDescriptor descriptor) throws OLAPException;�public void removeDescriptor(ValueDescriptor descriptor) throws OLAPException;�public MemberQuery getSubQuery(Dimension dim);�public QueryStatus getStatus();�public CubeEdge getOrientation(Dimension dimension);�public void pivotToNestLevel(Dimension dimension, CubeEdge toEdge, long nestLevel) throws OLAPException;

Method Cube::getName
public String getName();

Get the name of the cube. This is a place to attach descriptive information to the cube. It has no semantic meaning within the model, and is not constrained to be unique.

Method Cube::setName
public void setName(String value);

Set the name of the cube. This is a place to attach descriptive information to the cube. It has no semantic meaning within the model, and is not constrained to be unique.

Method Cube::getEdges
public CubeEdgeCollection getEdges();

Get the CubeEdge objects connected to the Cube instance.�

Method Cube::getDescriptors
public ValueDescriptorCollection getDescriptors();

Get the ValueDescriptor objects that specify the values to be returned for each cell. By default this set is initialized to contain the distinguished instance Connection:: defaultDescriptor.

Method Cube::pivot
public void pivot(Dimension dimension, CubeEdge toEdge, Dimension beforeDim) throws OLAPException;

Places the given dimension on the given CubeEdge "toEdge". The MemberQuery associated within the dimension is removed from the nestedQueries collection of its original edge, and is inserted into the nestedQueries collection of toEdge just prior to the MemberQuery representing the Dimension "beforeDim". If beforeDim is not specified, the dimension is appended to the collection.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		The edge is not valid for this cube.�
Parameters
Type		Name		Description 		
Dimension	dimension	Dimension to orient on cube.
CubeEdge	toEdge	The edge to orient the Dimension onto.
Dimension	beforeDim	Dimension of toEdge before which to place Dimension dimension.

Returns
void

Possible Exceptions
OLAPException

Method Cube::rotate
public void rotate(Dimension dim1, Dimension dim2) throws OLAPException;

Swaps the orientation of two dimensions. The dimension of dim1 will be placed at the edge and nesting level of dim2, and dim2 will be placed at the edge and nesting level of dim1. If dim1 and dim2 are the same dimension, then this operation has no effect.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�
Parameters
Type		Name		Description 		
Dimension	dim1	First dimension being swapped
Dimension	dim2	Second dimension being swapped

Returns
void

Possible Exceptions
OLAPException

Method Cube::setContext
public void setContext(MemberCollection cellRef, HierarchyCollection hiers) throws OLAPException;

This method combines several common cube selection and orientation operations into one step to establish outer boundaries for the N-dimensional data cube that will be the subject of the cube's view.��Given a collection of members 'cellRef' and a collection of corresponding hierarchies in 'hiers', it performs two distinct operations for each dimension that has a member in 'cellRef': ��· Restricts the dimension to only the given member and its descendants in the hierarchy;�· Maps the dimension to a predictable nesting level on the final edge of the cube.��For each hierarchy in 'hiers', there must be a corresponding member in 'cellRef'.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.
Parameters
Type		Name		Description 		
MemberCollection	cellRef	Collection of members, no more than one member per dimension, each defining the relative root or top of the hierarchy for the context
HierarchyCollection	hiers	Collection of hierarchies, one per member listed in cellRef, each defining the hierarchy for the context.

Returns
void

Possible Exceptions
OLAPException

Method Cube::setOrientation
public void setOrientation(CubeEdge edge, DimensionCollection dimensions) throws OLAPException;

Orients the specified dimensions on the given edge of the cube. Note that more than one dimension can be placed along, or "nested" on, a given edge (i.e. row, column, or page). In this case the first dimension in the array is innermost (i.e. closest to the data) and the last dimension in the array is outermost (i.e. farthest from the data). It is possible to have no dimensions along a given edge (e.g. no dimensions in the column edge) during query definition, but not at the point of validation.��Note that a dimension cannot be in two edges at the same time. For example, the "product" dimension cannot be both in the row and the column edges. The API will implement intelligent defaults. For example, assume that the "product" dimension is in the row edge, and setOrientation() is called to place the "product" dimension in the page edge. The "product" dimension will be removed from the row edge.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		Edge passed in is not valid.�INVALID_DIMENSIONS	Same dimension repeated more than once in dimensions.�
Parameters
Type		Name		Description 		
CubeEdge	edge	The edge that dimensions are to be oriented onto.
DimensionCollection	dimensions	Ordered set of dimensions to be oriented onto edge.

Returns
void

Possible Exceptions
OLAPException

Method Cube::validate
public void validate() throws OLAPException;

Performs validation of cube's definition and applied query objects, which will enable querying of member and cell information from cube if successful. To the degree that a vendor's implementation of this function also performs a query and fetches data, it is a synchronous operation: all querying and fetching will take place before the function returns.��Possible error codes include:�EDGE_ERROR		One of the edges of the cube has no dimensions.�BUSY			The cube is currently being validated asynchronously.�
Returns
void

Possible Exceptions
OLAPException

Method Cube::validateAsync
public ProgressMonitor validateAsync() throws OLAPException;

This operation has the same effect as the validate() method, but is performed asynchronously. Control returns immediately to the caller while the cube validation occurs in the background. The method returns an instance of ProgressMonitor, which allows the client to monitor progress of the asynchronous operation. The cube will not be usable until the validation has concluded.��Possible error codes include:�EDGE_ERROR		One of the edges of the cube has no dimensions.�BUSY			The cube is currently being validated asynchronously.�
Returns
ProgressMonitor

Possible Exceptions
OLAPException

Method Cube::getCell
public OLAPAny getCell(long[] coordinates, ValueDescriptor descriptor) throws OLAPException;

Retrieves a data value from the specified cell.��Possible error codes include:�INVALID_INDEX 		The co-ordinates were invalid for the cube�NOT_VALIDATED 		Cube definition has no been validated.�BUSY				The cube is currently being validated asynchronously.�INVALID_DESCRIPTOR 	The requested value is unavailable because the ValueDescriptor was not specified as part of the query definition.� _NOT_VALIDATED		The cube has not been successfully validated, so no data access is possible.�
Parameters
Type		Name		Description 		
long[]	coordinates	An array of zero-based indices specifying the coordinates of the cell to get.
ValueDescriptor	descriptor	The value descriptor that specifies which value is required from the cell. The descriptor must be one of the descriptors attached to the cube prior to cube validation.

Returns
OLAPAny

Possible Exceptions
OLAPException

Method Cube::clone
public Cube clone() throws OLAPException;

Create a complete copy of the cube query definition. Specifically, this method will create a new instance of Cube together with new copies of the CubeEdges and MemberQueries contained in the original cube. No metadata class will be copied. (So, for example, both the original and the copy will point to the same instances of Dimension.)��The new instance of Cube will begin in an invalidated state even if the original had been validated. It can be modified like any other cube, and its state is independent of the original.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�
Returns
Cube

Possible Exceptions
OLAPException

Method Cube::newBuffer
public Buffer newBuffer(long[] start, long[] end) throws OLAPException;

Create a new buffer for the cube, specifying Cartesian start and end vertices in the cube for the buffer.��Possible error codes include:�BUSY				The cube is currently being validated asynchronously.�INVALID_VERTEX_SIZE	The wrong number of indices in vertex�INVALID_INDICES 	 	An end edge index is smaller than the corresponding start index�NOT_VALIDATED 		The cube has not been validated
Parameters
Type		Name		Description 		
long[]	start	starting vertex in the cube for the buffer, as an array of longs, each of which is an index into an edge
long[]	end	ending vertex in the cube for the buffer, as an array of longs, each of which is an index into an edge

Returns
Buffer

Possible Exceptions
OLAPException

Pre Conditions
(1) self.getStatus = VALIDATED

Method Cube::createEdge
public CubeEdge createEdge() throws OLAPException;

Creates a new instance of CubeEdge and attaches it to the cube. The new edge will be empty by default. This method will raise an exception if either the number of edges would exceed the limit imposed by the implementation or if it would exceed the number of dimensions.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR		The cube can have no more edges. �
Returns
CubeEdge

Possible Exceptions
OLAPException

Method Cube::removeEdge
public void removeEdge(CubeEdge edge) throws OLAPException;

Remove an existing instance of CubeEdge from the collection of edges of the cube. The method will raise an exception if there are any dimensions on the edge being removed. (The client can move the dimensions from the edge using the pivot() method.) This method will also raise an exception if the number of edges would be below the minimum limit imposed by the implementation.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR		The edge cannot be removed from the cube. �
Parameters
Type		Name		Description 		
CubeEdge	edge	The instance of CubeEdge to be removed.

Returns
void

Possible Exceptions
OLAPException

Method Cube::addDescriptor
public void addDescriptor(ValueDescriptor descriptor) throws OLAPException;

Add an instance of ValueDescriptor to the collection contained by the cube. The set of ValueDescriptors attached to the cube is part of the query definition. Each cell in the cube can have multiple values. For example, each cell may have, in addition to the basic value, a formatted value, a background color, and a foreground color. Each kind of value present in the cell is represented by an instance of ValueDescriptor. (So, in the example above, there would be four instances, named "value", "formatted value", "background color", and "foreground color".) The only values that will be fetched by the cube are those in the descriptors set attached to the cube. When the cube is first created it will contain only the default ValueDescriptor (the one named "value" above). If the client needs the additional cell values, it must explicitly add the appropriate instances of ValueDescriptor to the cube by calling this method. ��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.
Parameters
Type		Name		Description 		
ValueDescriptor	descriptor	The ValueDescriptor to be added.

Returns
void

Possible Exceptions
OLAPException

Method Cube::removeDescriptor
public void removeDescriptor(ValueDescriptor descriptor) throws OLAPException;

Remove an instance of ValueDescriptor from the collection contained by the cube. The values corresponding to the descriptor will no longer be fetched.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.
Parameters
Type		Name		Description 		
ValueDescriptor	descriptor	The instance of ValueDescriptor to be removed.

Returns
void

Possible Exceptions
OLAPException

Method Cube::getSubQuery
public MemberQuery getSubQuery(Dimension dim);

Return the instance of MemberQuery contained in the cube that corresponds to the given dimension.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously.
Parameters
Type		Name		Description 		
Dimension	dim	The dimension whose MemberQuery is required.

Returns
MemberQuery

Method Cube::getStatus
public QueryStatus getStatus();

Return the current status of the query.
Returns
QueryStatus

Method Cube::getOrientation
public CubeEdge getOrientation(Dimension dimension);

Gets the edge on which the given dimension is oriented.��Possible error codes include:�BUSY		The cube is currently being validated asynchronously�
Parameters
Type		Name		Description 		
Dimension	dimension	The dimension for which to get the orientation.

Returns
CubeEdge

Method Cube::pivotToNestLevel
public void pivotToNestLevel(Dimension dimension, CubeEdge toEdge, long nestLevel) throws OLAPException;

Places the given dimension on the given CubeEdge "toEdge". The MemberQuery associated within the dimension is removed from the nestedQueries collection of its original edge, and is inserted into the nestedQueries collection of toEdge at zero-based index 'nestLevel'.��Possible error codes include:�BUSY			The cube is currently being validated asynchronously.�EDGE_ERROR 		The edge is not valid for this cube.�
Parameters
Type		Name		Description 		
Dimension	dimension	The dimension to orient onto an edge
CubeEdge	toEdge	The edge onto which to orient the dimension.
long	nestLevel	The zero-based index in the ordered collection of dimensions on the edge at which to place the dimension.

Returns
void

Possible Exceptions
OLAPException

�Interface CubeEdge
public interface CubeEdge

A CubeEdge represents one edge of a Cube.��A cube edge is either validated or invalidated. All cube edges of a cube are validated when the cube is validated. The following methods will only work when the cube edge is validated:��resultCount()�getCellIndex()�getIndexMembers()�

Methods
public boolean getSuppressMissing();�public void setSuppressMissing(boolean value);�public boolean getSuppressZeros();�public void setSuppressZeros(boolean value);�public Cube getCube();�public MemberQueryCollection getNestedQueries();�public DimensionCollection getDimensions() throws OLAPException;�public long resultCount() throws OLAPException;�public long getCellIndex(MemberCollection reference) throws OLAPException;�public MemberCollection getIndexMembers(long index) throws OLAPException;�public long getNestingOfDimension(Dimension dimension) throws OLAPException;

Method CubeEdge::getSuppressMissing
public boolean getSuppressMissing();

Get a boolean value which indicates whether the query should filter out all member tuples for which the cell values are empty for all combinations of members on the other edges. (The cell values used are taken to be those associated with the default ValueDescriptor.)��If both suppressMissing and suppressZeros are true, then filter out all member tuples for which the cell values are either missing or zero for all combinations of members on the other edges.

Method CubeEdge::setSuppressMissing
public void setSuppressMissing(boolean value);

Set a boolean value which indicates whether the query should filter out all member tuples for which the cell values are empty for all combinations of members on the other edges. (The cell values used are taken to be those associated with the default ValueDescriptor.)��If both suppressMissing and suppressZeros are true, then filter out all member tuples for which the cell values are either missing or zero for all combinations of members on the other edges.

Method CubeEdge::getSuppressZeros
public boolean getSuppressZeros();

Get a boolean value which indicates whether the query should filter out all member tuples for which the cell values are zero for all combinations of members on the other edges. (The cell values used are taken to be those associated with the default ValueDescriptor.)��If both suppressMissing and suppressZeros are true, then filter out all member tuples for which the cell values are either missing or zero for all combinations of members on the other edges.

Method CubeEdge::setSuppressZeros
public void setSuppressZeros(boolean value);

Set a boolean value which indicates whether the query should filter out all member tuples for which the cell values are zero for all combinations of members on the other edges. (The cell values used are taken to be those associated with the default ValueDescriptor.)��If both suppressMissing and suppressZeros are true, then filter out all member tuples for which the cell values are either missing or zero for all combinations of members on the other edges.

Method CubeEdge::getCube
public Cube getCube();

Get the Cube of which the CubeEdge is an edge.

Method CubeEdge::getNestedQueries
public MemberQueryCollection getNestedQueries();

Get the MemberQueries that collectively define the contents of the edge. This is an ordered list. The first MemberQuery defines the slowest varying set of members. The set of members returned by each subsequent MemberQuery will be nested under the tuples above it. Mathematically, the result set of the edge is equal to the cross-product of the result sets of the nested member queries (from which tuples may be suppressed if suppressMissing or suppressZeros is true).

Method CubeEdge::getDimensions
public DimensionCollection getDimensions() throws OLAPException;

Fetches the current list and order of dimensions along the cube edge. The first dimension in the array is the innermost dimension (the one "closest" to the data), while the last dimension is the outermost dimension.��Possible error codes include:�BUSY			The cube of which this is an edge is currently being validated asynchronously.�
Returns
DimensionCollection

Possible Exceptions
OLAPException

Method CubeEdge::resultCount
public long resultCount() throws OLAPException;

Returns the number of cells that may be found along this cube edge.��Possible error codes include:�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.�BUSY			The cube of which this is an edge is currently being validated asynchronously.
Returns
long

Possible Exceptions
OLAPException

Method CubeEdge::getCellIndex
public long getCellIndex(MemberCollection reference) throws OLAPException;

Returns the zero-based cell index along the edge for the given combination of members.��Possible error codes include:�BUSY			The cube of which this is an edge is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The members given in the MemberCollection do not correspond to the dimensions on the edge.�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.
Parameters
Type		Name		Description 		
MemberCollection	reference	Set of members, one from each dimension along edge

Returns
long

Possible Exceptions
OLAPException

Method CubeEdge::getIndexMembers
public MemberCollection getIndexMembers(long index) throws OLAPException;

Returns a collection of members which map to the given zero-based cell index along the cube edge. ��Possible error codes include:��INVALID_INDEX 	index is either less than 0 or greater than the number of members returned by getExtent().�NOT_VALIDATED	The cube has not been successfully validated, so no data access is possible.�BUSY			The cube of which this is an edge is currently being validated asynchronously.��
Parameters
Type		Name		Description 		
long	index	Cell index along edge

Returns
MemberCollection

Possible Exceptions
OLAPException

Method CubeEdge::getNestingOfDimension
public long getNestingOfDimension(Dimension dimension) throws OLAPException;

Returns the nesting level of the given dimension on the edge.��Possible error codes include:�NOT_IN_COLLECTION		The dimension is not oriented on the edge
Parameters
Type		Name		Description 		
Dimension	dimension	The Dimension for which to find the nesting level.

Returns
long

Possible Exceptions
OLAPException

�Interface Dimension
public interface Dimension extends MemberScope

A Dimension collects one or more members in hierarchies. A dimension is the top-level organization for members of a particular domain type, such as time, products, measures, geographical locations, etc.��The MDAPI recognizes two special types of dimensions in addition to a generic dimension: time and measures. A member of a measure dimension (modeled by Measure) has additional attributes. A member of a time dimension has no additional attributes, but will be of special interest to many applications.��Invariants:�(1) Dimension::members = the union of all Dimension::hierarchies.members.��

Methods
public DimensionType getDimensionType();�public HierarchyCollection getHierarchies();�public Hierarchy getDefaultHierarchy();�public LevelCollection getLevels();�

Method Dimension::getDimensionType
public DimensionType getDimensionType();

Get an enumeration value that describes the type of the dimension. Available types are:��TIME_DIMENSION�MEASURE_DIMENSION�OTHER_DIMENSION

Method Dimension::getHierarchies
public HierarchyCollection getHierarchies();

Get the hierarchies defined for the dimension. Each dimension will have one or more hierarchies.

Method Dimension::getDefaultHierarchy
public Hierarchy getDefaultHierarchy();

Get the default hierarchy for the dimension, if there is any default defined. Otherwise, a null object.

Method Dimension::getLevels
public LevelCollection getLevels();

Get the levels defined for the dimension.
�Interface Driver
public interface Driver

The Driver class represents a particular vendor's implementation of the MDAPI.

Methods
public String getVendorName();�public String getDriverProduct();�public String getDriverVersion();�public String getDriverName();�public Language getLanguage();�public SchemaCollection getAvailableSchemata();�public Session getSession();�public Connection openConnection(String connectionString, String authenticationString) throws OLAPException;�public SchemaCollection getSchemataByName(String schemaName, boolean caseSensitive) throws OLAPException;

Method Driver::getVendorName
public String getVendorName();

Get the name of the vendor that implemented the driver.

Method Driver::getDriverProduct
public String getDriverProduct();

Get the name of the product of which the driver is a part.

Method Driver::getDriverVersion
public String getDriverVersion();

Get the version of the driver. Format TBD.

Method Driver::getDriverName
public String getDriverName();

Get the name of the driver. This name is unique over all implementations of the API.

Method Driver::getLanguage
public Language getLanguage();

Get the default language for error messages produced in the domain of the Driver.

Method Driver::getAvailableSchemata
public SchemaCollection getAvailableSchemata();

Get the schemata available through the driver. Note that the availableSchemata collection may be of indeterminate size.

Method Driver::getSession
public Session getSession();

Get the instance of Session that manages all connections.

Method Driver::openConnection
public Connection openConnection(String connectionString, String authenticationString) throws OLAPException;

Open a connection to a multi-dimensional schema.
Parameters
Type		Name		Description 		
String	connectionString	A string that identifies the schema to the driver
String	authenticationString	A string that provides authentication information about the user to the driver.

Returns
Connection

Possible Exceptions
OLAPException

Method Driver::getSchemataByName
public SchemaCollection getSchemataByName(String schemaName, boolean caseSensitive) throws OLAPException;

Returns a collection of Schema objects, given a schema name or a wildcard. The caseSensitive flag controls whether the search is case-sensitive.��Note that since multiple schemas may share the same wild-card pattern, this method returns a SchemaCollection object.
Parameters
Type		Name		Description 		
String	schemaName	The name or wild-card pattern of the schema to search for.
boolean	caseSensitive	A Boolean switch determining whether the search is case sensitive or not.

Returns
SchemaCollection

Possible Exceptions
OLAPException

�Interface EdgeBuffer
public interface EdgeBuffer

An EdgeBuffer represents a buffer for one edge of a Buffer. There is an EdgeBuffer for each CubeEdge in the query.�

Methods
public long getExtent();�public EdgeLayerBufferCollection getEdgeLayerBuffers();�public CubeEdge getCubeEdge();�public void next() throws OLAPException;�public void previous() throws OLAPException;�public void setIndex(long index) throws OLAPException;�public void scroll(long cells) throws OLAPException;

Method EdgeBuffer::getExtent
public long getExtent();

Get the number of cells along the buffer. This is the same as the extent of the fastest-varying edge layer buffer.

Method EdgeBuffer::getEdgeLayerBuffers
public EdgeLayerBufferCollection getEdgeLayerBuffers();

Get an ordered collection of EdgeLayerBuffers, one for each dimension in the edge. The order mirrors the order of the collection of MemberQueries for the corresponding CubeEdge.

Method EdgeBuffer::getCubeEdge
public CubeEdge getCubeEdge();

Get the cube edge that corresponds to the cube edge buffer

Method EdgeBuffer::next
public void next() throws OLAPException;

Advances the current position along the edge by one cell. This resets the currentCell attribute in the Buffer to a new data cell. It also resets the currentCell attribute in each of the EdgeLayerBuffers to a new edge cell.��If the current cell in the fastest-varying edge layer buffer is the last one, advancing the position 'wraps' by resetting the position to the first cell and advancing the current cell in the next slower-varying edge layer buffer. Similarly, if the current cell in that edge layer buffer is the last one, it, too, is set to the first cell and the next slower-varying edge layerbuffer is advanced. Note that if the query is asymmetric because of NA or zero-suppression, the set of cells represented by an edge layer buffer may vary across the cells of the slower-varying edge layer buffer. ��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.��BUFFER_AT_END		all layers are already at their last positions.�
Returns
void

Possible Exceptions
OLAPException

Method EdgeBuffer::previous
public void previous() throws OLAPException;

Backs up the current position along the edge by one cell. This resets the currentCell attribute in the Buffer to a new data cell. It also resets the currentCell attribute in each of the EdgeLayerBuffers to a new edge cell.��If the current cell in the fastest-varying edge layer buffer is the first one, backing up the position 'wraps' by resetting the position to the last cell and backing up the current cell in the next slower-varying edge layer buffer. Similarly, if the current cell in that edge layer buffer is the first one, it, too, is set to the last cell and the next slower-varying edge layer buffer is backed up. Note that if the query is asymmetric because of NA or zero-suppression, the set of cells represented by an edge layer buffer may vary across the cells of the slower-varying edge layer buffer. ��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.��BUFFER_AT_END		all layers are already at their first positions.�
Returns
void

Possible Exceptions
OLAPException

Method EdgeBuffer::setIndex
public void setIndex(long index) throws OLAPException;

Sets the current zero-based cell index for the edge. The current cell indices for the other edges are unaffected. This affects the current data cell for the buffer and the current edge cell for each of the layers on the edge. This method will be used primarily to get to the dimension members for an index in the edge.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long	index	The cell index in the edge

Returns
void

Possible Exceptions
OLAPException

Method EdgeBuffer::scroll
public void scroll(long cells) throws OLAPException;

Scrolls the buffer along the edge by the specified number of cells. This is a convenience function that is equivalent to destroying the current buffer and creating a new one with an offset range.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.�
Parameters
Type		Name		Description 		
long	cells	the number of cells by which to scroll the buffer

Returns
void

Possible Exceptions
OLAPException

�Interface EdgeLayerBuffer
public interface EdgeLayerBuffer

An EdgeLayerBuffer represents a buffer for one dimension in a buffer edge.

Methods
public long getExtent();�public long getPropertiesCount();�public long getValuesCount();�public MemberQuery getMemberQuery();�public EdgeLayerCell getCurrentCell();�public EdgeLayerCellCollection getEdgeLayerCells(long start, long end) throws OLAPException;�public void getCellsFloat(long start, long end, ValueDescriptor valueType, float[] values) throws OLAPException;�public void getCellsDouble(long start, long end, ValueDescriptor valueType, double[] values) throws OLAPException;�public void getCellsText(long start, long end, ValueDescriptor valueType, String[] values) throws OLAPException;�public void getCellsLong(long start, long end, ValueDescriptor valueType, long[] values) throws OLAPException;�public void getCellsDate(long start, long end, ValueDescriptor valueType, java.util.Date[] values) throws OLAPException;�public void getCellsBool(long start, long end, ValueDescriptor valueType, boolean[] values) throws OLAPException;

Method EdgeLayerBuffer::getExtent
public long getExtent();

Get the number of cells in the edge layer.

Method EdgeLayerBuffer::getPropertiesCount
public long getPropertiesCount();

Get the number of properties available for the edge cells of the edge layer buffer

Method EdgeLayerBuffer::getValuesCount
public long getValuesCount();

Get the number of values available for the edge cells of the edge layer buffer

Method EdgeLayerBuffer::getMemberQuery
public MemberQuery getMemberQuery();

Get the member query that corresponds to the cube edge layer buffer

Method EdgeLayerBuffer::getCurrentCell
public EdgeLayerCell getCurrentCell();

Get the current edge cell for the edge layer buffer. After creating a Buffer, the currentCell is set to the first edge cell in the layer. It is changed by calling EdgeBuffer::next and EdgeBuffer::previous.

Method EdgeLayerBuffer::getEdgeLayerCells
public EdgeLayerCellCollection getEdgeLayerCells(long start, long end) throws OLAPException;

Extracts a collection of EdgeLayerCells for the layer from the Buffer. The arguments are start and end indices into the cells that are logically contained by the edge layer buffer.��The collection is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and the order of the cells in the collection.��Possible error codes include:�BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long	start	The index into the edge that marks the starting element of the cells to extract.
long	end	The index into the cells for the edge layer that marks the end of the cells to extract.

Returns
EdgeLayerCellCollection

Possible Exceptions
OLAPException

Method EdgeLayerBuffer::getCellsFloat
public void getCellsFloat(long start, long end, ValueDescriptor valueType, float[] values) throws OLAPException;

Fills an array of single-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long	start	The index into the edge that marks the starting element of the cells to extract.
long	end	The index into the cells for the edge layer that marks the end of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
float[]	values	The array of single-precision floating-point numbers to fill.

Returns
void

Possible Exceptions
OLAPException

Method EdgeLayerBuffer::getCellsDouble
public void getCellsDouble(long start, long end, ValueDescriptor valueType, double[] values) throws OLAPException;

Fills an array of double-precision floating-point numbers representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long	start	an index into the cells for the edge layer that marks the start of the cells to extract
long	end	The index into the cells for the edge layer that marks the end of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
double[]	values	The array of double-precision floating-point numbers to fill.

Returns
void

Possible Exceptions
OLAPException

Method EdgeLayerBuffer::getCellsText
public void getCellsText(long start, long end, ValueDescriptor valueType, String[] values) throws OLAPException;

Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long	start	The index into the edge that marks the starting element of the cells to extract.
long	end	The index into the cells for the edge layer that marks the end of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
String[]	values	The array of strings to fill.

Returns
void

Possible Exceptions
OLAPException

Method EdgeLayerBuffer::getCellsLong
public void getCellsLong(long start, long end, ValueDescriptor valueType, long[] values) throws OLAPException;

Fills an array of strings representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long	start	The index into the edge that marks the starting element of the cells to extract.
long	end	The index into the cells for the edge layer that marks the end of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
long[]	values	The array of longs to fill.

Returns
void

Possible Exceptions
OLAPException

Method EdgeLayerBuffer::getCellsDate
public void getCellsDate(long start, long end, ValueDescriptor valueType, java.util.Date[] values) throws OLAPException;

Fills an array of Dates representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'float'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long	start	The index into the edge that marks the starting element of the cells to extract.
long	end	The index into the cells for the edge layer that marks the end of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
java.util.Date[]	values	The array of dates to fill.

Returns
void

Possible Exceptions
OLAPException

Method EdgeLayerBuffer::getCellsBool
public void getCellsBool(long start, long end, ValueDescriptor valueType, boolean[] values) throws OLAPException;

Fills an array of booleans representing the values of the specified range of cells for the value type represented by the specified value descriptor. The application must provide an array of sufficient size.��The array is ordered to mirror the order of the edges and dimensions in the cube. It is the responsibility of the caller to map between edge indices and array indices.��Possible error codes include:�DATATYPE_MISMATCH	the data type of the range of cells for the specified value type is not uniformly 'boolean'��BUFFER_INVALID		the buffer is invalid because the cube has been modified and revalidated.
Parameters
Type		Name		Description 		
long	start	The index into the edge that marks the starting element of the cells to extract.
long	end	The index into the cells for the edge layer that marks the end of the cells to extract.
ValueDescriptor	valueType	A ValueDescriptor that represents the value type to extract for each cell.
boolean[]	values	The array of booleans to fill.

Returns
void

Possible Exceptions
OLAPException

�Interface EdgeLayerCell
public interface EdgeLayerCell

An EdgeLayerCell represents a cell in an edge of a buffer. Logically, there is an EdgeLayerCell for each occurrence of each dimension member in the edge. The MDAPI does not represent the collection of EdgeLayerCells for an EdgeLayerBuffer, but instead relies on methods on EdgeLayerBuffer to obtain EdgeLayerCells. This allows implementations to efficiently represent these collections, which may be sparse.��A cell may contain values for more than one property. For instance, a cell may contain both a member name, used for saved reports, and a member caption, used for display, This is represented by an association with a number of OLAPAny objects, qualified by the Property.

Methods
public long getSpan();�public long getOffset();�public Member getMember();�public Cell getCell(Property property);�

Method EdgeLayerCell::getSpan
public long getSpan();

Get the number of cells in the fastest-varying layer above which the edge cell is nested

Method EdgeLayerCell::getOffset
public long getOffset();

Get the offset into the cells in the fastest-varying layer above which the edge cell begins

Method EdgeLayerCell::getMember
public Member getMember();

Get the dimension member that corresponds to the edge cell.

Method EdgeLayerCell::getCell
public Cell getCell(Property property);

Get the cell that contains the values for the specified property

Parameters
Type		Name		Description 		
Property 	property	
�Interface Hierarchy
public interface Hierarchy extends MemberScope

A Hierarchy represents a collection of members of dimensions related in hierarchical fashion. Each Hierarchy contains one or more levels (represented by Level objects) which collect members sharing a common place within the hierarchy.��Invariants: �(1) Hierarchy::members is equal to the union of all Hierarchy::levels.members;�(2) For all distinct L1, L2 in Hierarchy::levels, L1.members does not intersect L2.members;�(3) For all distinct L1, L2 in Hierarchy::levels with L1 preceding L2 in the level ordering, there cannot exist members M1 in L1 and M2 in L2 such that M1 is a descendant of M2 in the hierarchy. (In other words, the arrangement of levels follows the topological ordering of the members in the hierarchy).

Methods
public LevelCollection getLevels();�public MemberQuery relationQuery(MemberRelation relationship, Member member) throws OLAPException;

Method Hierarchy::getLevels
public LevelCollection getLevels();

Get the Levels for the hierarchy.

Method Hierarchy::relationQuery
public MemberQuery relationQuery(MemberRelation relationship, Member member) throws OLAPException;

Return a new MemberQuery representing the specified set of relations of the Hierarchy instance.��aHierarchy.relationQuery(aRelationship, aMember)��is equivalent to��query = aMember.dimension.newQuery(NONE)�query.addRelations(aMember, aReleationship, aHierachy)��Possible error codes include:�WRONG_DIMENSIONALITY The hierarchy does not share the same dimension as the member.
Parameters
Type		Name		Description 		
MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be returned by the new query.
Member	member	The Member upon which the relationship is based.

Returns
MemberQuery

Possible Exceptions
OLAPException

�Interface Language
public interface Language

Represents a language used to render error messages.

Methods
public String getName();�

Method Language::getName
public String getName();

Get the name of the language. Format to be decided.
�Interface Level
public interface Level extends MemberScope

A Level represents a level of a hierarchy and organizes members according to structural relations within the hierarchy.��

Methods
public Dimension getDimension();�

Method Level::getDimension
public Dimension getDimension();

Get the dimension for which the level is defined.
�Interface Measure
public interface Measure extends Member

A Measure is a subclass of Member that functions more as a type of variable.��Every cell in a cube result that is intersected with a measure will have the same data type, defined by the 'Type' attribute of the measure.��Each measure may be associated with a different set of other dimensions from other measures.��Invariants: �(1) Measure::dimension.dimensionType = MEASURE_DIMENSION;�(2) Measure::dimensions is a subset of connection.dimensions, where connection is the Connection in which the member is valid;�(3) Measure::dimensions cannot include the measures dimension.

Methods
public long getScale();�public long getPrecision();�public DataType getType();�public DimensionCollection getDimensions();�public ValueType getValueType(ValueDescriptor descriptor);�

Method Measure::getScale
public long getScale();

Get the power of 10 by which the number was adjusted before storing. For example, a value of 2 means that the measure has been multiplied by 100 prior to storing and should be divided by 100 to obtain the correct value. A value of 0 means that no scaling is required. �

Method Measure::getPrecision
public long getPrecision();

Get the number of decimal places to display. Any display formatting performed should be performed after the number has been transformed by any applicable scale (see the Scale attribute above).�

Method Measure::getType
public DataType getType();

Get the data type of ValueType contained in the Measure that corresponds to the default ValueDescriptor.�

Method Measure::getDimensions
public DimensionCollection getDimensions();

Get the dimensions that "dimension" (identify values for) this measure. Each Measure may have a different set of dimensions.

Method Measure::getValueType
public ValueType getValueType(ValueDescriptor descriptor);

Get the ValueType, if any, corresponding to the value descriptor.

Parameters
Type		Name		Description 		
ValueDescriptor 	descriptor	The value descriptor categorizing the ValueType.
�Interface Member
public interface Member

A Member represents a member of a dimension. Members and combinations of members from different dimensions identify values for properties and cells in a cube.�

Methods
public String getName();�public Dimension getDimension();�

Method Member::getName
public String getName();

Get the name for the measure.��Invariant:�(1) Measure.name must equal the value obtained from nameProperty.getValue(Member), where nameProperty is the "name" Property obtained from the appropriate Connection.

Method Member::getDimension
public Dimension getDimension();

Get the unique instance of Dimension that contains the Member instance.
�Interface MemberQuery
public interface MemberQuery extends MemberScope

The MemberQuery type represents a set of Members (a MemberScope) that is determined by query. Its interface is designed to allow for continuous modification by the client. The implementation is free to choose any internal representation of the query.��MemberQuery instances are created in three ways:��(1) When a Cube is created, one MemberQuery will be placed on an edge for each dimension.�(2) As part of the creation of more exotic Cubes. The methods addAllFrom(), removeAllFrom(), and keepAllFrom() take MemberScopes (including other MemberQueries) as parameters. While may queries can be constructed without these methods, some cannot. The method MemberScope::newQuery() thus allows more complicated queries.�(3) As a mechanism to retrieve metadata. By creating a MemberQuery, the client is able to make complex metadata queries. See also the method relationQuery() on Hierarchy.

Methods
public ParameterHolderCollection getParameters();�public ValueDescriptorCollection getDescriptors();�public void keep(ValueExpression expression) throws OLAPException;�public void add(ValueExpression expression) throws OLAPException;�public void remove(ValueExpression expression) throws OLAPException;�public void removeMember(Member member) throws OLAPException;�public void addMember(Member member) throws OLAPException;�public void addAllFrom(MemberScope scope) throws OLAPException;�public void removeAllFrom(MemberScope scope) throws OLAPException;�public void keepAllFrom(MemberScope scope) throws OLAPException;�public void addRelations(Member member, MemberRelation relationship, Hierarchy hierarchy) throws OLAPException;�public void removeRelations(Member member, MemberRelation relationship, Hierarchy hierarchy) throws OLAPException;�public void addGeneration(Hierarchy hierarchy, HierarchyDirection direction, long distance) throws OLAPException;�public void keepRelations(Member member, MemberRelation relationship, Hierarchy hierarchy) throws OLAPException;�public void sortByValue(ValueExpression basedOn, SortOrder order) throws OLAPException;�public void sortByHierarchy(Hierarchy hierarchy, SortOrder order) throws OLAPException;�public void sortByLevel(Hierarchy hierarchy, SortOrder order) throws OLAPException;�public void resetNaturalSortOrder() throws OLAPException;�public void resort() throws OLAPException;�public void selectAll() throws OLAPException;�public void selectNone() throws OLAPException;�public ValueExpression newPropertyValueExpression(Property property, ValueDescriptor descriptor) throws OLAPException;�public ValueExpression newCellValueExpression(MemberCollection context, ValueDescriptor descriptor) throws OLAPException;�public ParameterHolder newParameter(String name, DataType dataType, OLAPAny value) throws OLAPException;�public MemberQuery clone() throws OLAPException;�public void validate() throws OLAPException;�public ProgressMonitor validateAsync() throws OLAPException;�public long resultCount() throws OLAPException;�public ParameterHolder getParameterByName(String name) throws OLAPException;�public void addDescriptor(ValueDescriptor descriptor) throws OLAPException;�public void removeDescriptor(ValueDescriptor descriptor) throws OLAPException;�public void addProperty(Property property) throws OLAPException;�public void removeProperty(Property property) throws OLAPException;�public EdgeLayerBuffer newBuffer(long start, long end) throws OLAPException;�public void select(ValueExpression expression) throws OLAPException;�public void selectAllFrom(MemberScope scope) throws OLAPException;�public void selectRelations(Member member, MemberRelation relationship, Hierarchy hierarchy) throws OLAPException;�public void selectGeneration(Hierarchy hierarchy, HierarchyDirection direction, long distance) throws OLAPException;�public QueryStatus getStatus();�public void addMembers(MemberCollection members) throws OLAPException;

Method MemberQuery::getParameters
public ParameterHolderCollection getParameters();

Get the ParameterHolders that have been created for the MemberQuery instance. All (named) parameters used by any ValueExpressions for the query will be included.

Method MemberQuery::getDescriptors
public ValueDescriptorCollection getDescriptors();

Get the ValueDescriptors specifying the values to be returned for the requested properties. By default this set is initialized to contain the distinguished instance Connection:: defaultDescriptor.

Method MemberQuery::keep
public void keep(ValueExpression expression) throws OLAPException;

Filter the current set of Members to include only those for whom the ValueExpression is true.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.��
Parameters
Type		Name		Description 		
ValueExpression	expression	A Boolean-valued instance of ValueExpression to be used as a predicate.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) expression.query = self�(2) expression.dataType = BOOLEAN

Post Conditions
(1) The new return set is equal to the set of all members of the old return set for which the value of expression is true.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::add
public void add(ValueExpression expression) throws OLAPException;

Add all members from the dimension for which the ValueExpression is true to the current set of members. The new members are appended to the result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	expression	A Boolean-valued instance of ValueExpression to be used as a predicate.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) expression.query = self�(2) expression.dataType = BOOLEAN

Post Conditions
(1) The new return set is equal to the old return set unioned with the set of all members of query.dimension for which the value of expression is true.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::remove
public void remove(ValueExpression expression) throws OLAPException;

Filter the current set of Members to include only those for whom the ValueExpression is false.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	expression	A Boolean-valued instance of ValueExpression to be used as a predicate.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) expression.query = self�(2) expression.dataType = BOOLEAN�

Post Conditions
(1) The new return set is equal to the set of all members of the old return set for which the value of expression is false;�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::removeMember
public void removeMember(Member member) throws OLAPException;

Remove a particular Member from the MemberQuery instance's result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The member does not belong to the same dimension as the query.�
Parameters
Type		Name		Description 		
Member	member	The instance of Member to be explicitly removed from the MemberQuery instance's result set.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) member.dimension = self.dimension

Post Conditions
(1) The new return set is equal to the old return set minus the given member;�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::addMember
public void addMember(Member member) throws OLAPException;

Add a particular Member to the MemberQuery instance's result set. The new member is appended to the result set.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The member does not belong to the same dimension as the query.�
Parameters
Type		Name		Description 		
Member	member	The instance of Member to be explicitly added to the MemberQuery instance's result set.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) member.dimension = self.dimension

Post Conditions
(1) The new return set is equal to the old return set plus the given member;�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::addAllFrom
public void addAllFrom(MemberScope scope) throws OLAPException;

Add all members defined by 'scope' to the return set of the MemberQuery instance. The new members are appended to the result set.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as the parameter has different dimensionality than the MemberQuery instance.�
Parameters
Type		Name		Description 		
MemberScope	scope	The MemberScope whose members are to be added to the MemberQuery instance's result set.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) scope.dimension = self.dimension

Post Conditions
(1) The new return set is equal to the old return set unioned with the return set of the parameter scope;�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::removeAllFrom
public void removeAllFrom(MemberScope scope) throws OLAPException;

Remove all members defined by 'scope' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as parameter has different dimensionality than the MemberQuery instance.�
Parameters
Type		Name		Description 		
MemberScope	scope	The MemberScope whose members are to be removed from the MemberQuery instance's result set.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) scope.dimension = self.dimension

Post Conditions
(1) The new return set is equal to the old return set minus the return set of the parameter scope.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::keepAllFrom
public void keepAllFrom(MemberScope scope) throws OLAPException;

Keep only those members contained in 'scope' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as parameter has different dimensionality than the MemberQuery instance.�
Parameters
Type		Name		Description 		
MemberScope	scope	The MemberScope whose members are to be kept in the MemberQuery instance's result set.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) scope.dimension = self.dimension

Post Conditions
(1) The new return set is equal to the old return set intersected with the return set of the parameter scope.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::addRelations
public void addRelations(Member member, MemberRelation relationship, Hierarchy hierarchy) throws OLAPException;

Add all the relations of 'member' in 'hierarchy' defined by 'relationship' to the return set of the MemberQuery instance. The new members are inserted into the result set, immediately following 'member'.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension than the one the MemberQuery instance is querying over.�
Parameters
Type		Name		Description 		
Member	member	The instance of Member whose relations are to be added to the Member Query instance's result set.
MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be added.
Hierarchy	hierarchy	The instance of Hierarchy defining the relationships.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) member.dimension = self.dimension;�(2) hierarchy.dimension = self.dimension

Post Conditions
(1) The new return set will be equal to the old return set unioned with all relations of member in hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::removeRelations
public void removeRelations(Member member, MemberRelation relationship, Hierarchy hierarchy) throws OLAPException;

Remove all the relations of 'member' in 'hierarchy' defined by 'relationship' from the return set of the MemberQuery instance.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension than the one the MemberQuery instance is querying over.�
Parameters
Type		Name		Description 		
Member	member	The instance of Member whose relations are to be removed from the MemberQuery instance's result set.
MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be removed.
Hierarchy	hierarchy	The instance of Hierarchy defining the relationships.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) member.dimension = self.dimension�(2) hierarchy.dimension = self.dimension

Post Conditions
(1) The new return set will be equal to the old return set minus all relations of member in hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::addGeneration
public void addGeneration(Hierarchy hierarchy, HierarchyDirection direction, long distance) throws OLAPException;

Adds the collection of members that exist at the specified position in the hierarchy. The new members are appended to the result set.��If the direction is HEIGHT, then the collection is of members at 'distance' units from the leaf level. �If the direction is DEPTH, then the collection is of members at 'distance' units from the root level.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�INVALID_INDEX		The supplied distance parameter is invalid.�
Parameters
Type		Name		Description 		
Hierarchy	hierarchy	The instance of Hierarchy defining the generations.
HierarchyDirection	direction	A HierarchyDirection representing the direction in which to count generations.
long	distance	The number of the generation. The first generation is number zero.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) hierarchy.dimension = self.dimension;�(2) distance >=0.

Post Conditions
(1) The new result set will be the union of the old result set with the set of all members of self.dimension in the specified generation of the given hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::keepRelations
public void keepRelations(Member member, MemberRelation relationship, Hierarchy hierarchy) throws OLAPException;

Remove all members currently returned by the MemberQuery instance except the relations of 'member' in 'hierarchy' defined by 'relationship'.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension to the one the MemberQuery instance is querying over.�
Parameters
Type		Name		Description 		
Member	member	The instance of Member whose relations are to be kept in the MemberQuery instance's result set.
MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be kept.
Hierarchy	hierarchy	The instance of Hierarchy defining the relationships.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) member.dimension = self.dimension�(2) hierarchy.dimension = self.dimension

Post Conditions
(1) The new return set will be equal to the old return set intersected with all relations of member in hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::sortByValue
public void sortByValue(ValueExpression basedOn, SortOrder order) throws OLAPException;

Sort the result set by the specified value, preserving any previous sorting where the new sort order does not distinguish between Members��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have a valid data type.�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	basedOn	A ValueExpression representing the value the sort is to performed on.
SortOrder	order	The SortOrder indicating the sort direction.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) basedOn.query = self

Post Conditions
(1) The new result set will contain the same members as the old result set, but will be sorted according to the following rule: � (a) The result set is partitioned by putting all members whose value for "basedOn" into the same group.� (b) Within each of these groups the old ordering applies.� (c) The groups are ordered according to the natural ordering of the value associated to each group, either in ascending or descending order according to the value of the "order" parameter.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::sortByHierarchy
public void sortByHierarchy(Hierarchy hierarchy, SortOrder order) throws OLAPException;

Sort the result set topologically by the specified hierarchy, preserving any previous sorting where the new sort order does not distinguish between Members��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�
Parameters
Type		Name		Description 		
Hierarchy	hierarchy	The Hierarchy over which the dimension is to be sorted.
SortOrder	order	The SortOrder indicating the sort direction.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) hierarchy.dimension=self.dimension

Post Conditions
(1) The new result set will contain the same members as the old result set, but will be sorted according to the following rule: �(a) The result set is partitioned by putting all members sharing the same parent (with respect to the given hierarchy) into the same group.�(b) Within each of these groups the old ordering applies.�(c) If the value of "order" is DESCENDING, then the members are arranged so that every member occurs before all of its descendants, but after both the previous member of its group and all of the previous member's descendants.�(c) If the value of "order" is ASCENDING, then the members are arranged so that every member occurs after all of its descendants, but before both the previous member of its group and all of the previous member's descendants.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::sortByLevel
public void sortByLevel(Hierarchy hierarchy, SortOrder order) throws OLAPException;

Sort the result set by levels of the specified hierarchy, preserving any previous sorting where the new sort order does not distinguish between Members.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension than the one the MemberQuery instance is querying over.�
Parameters
Type		Name		Description 		
Hierarchy	hierarchy	The Hierarchy over which the dimension is to be sorted.
SortOrder	order	The SortOrder indicating the sort direction.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) hierarchy.dimension=self.dimension

Post Conditions
(1) The new result set will contain the same members as the old result set, but will be sorted according to the following rule: �(a) The result set is partitioned by putting all members into groups sharing the same level.�(b) Within each of these groups the old ordering applies.�(c) The groups are ordered according to order of the levels, depending on the value of the order parameter.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::resetNaturalSortOrder
public void resetNaturalSortOrder() throws OLAPException;

Remove all sort criteria from the query and restore the 'natural' sort order of the selection.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Returns
void

Possible Exceptions
OLAPException

Post Conditions
(1) The new result set will be identical to the old, but the members will be presented in the "natural database ordering".�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::resort
public void resort() throws OLAPException;

Resort the collection by applying, in the order that they were first applied, all previous sort commands issued since either the query was first created or since the resetNaturalSortOrder() method was invoked.��Example:��Imagine we start with the set of members NY, MA, CA, WI.�(1) If we sort alphabetically by name, the result set will become CA, MA, NY, WI�(2) If we then drill down on NY, the result set becomes CA, MA, NY, 'Albany', 'Buffalo', 'New York', WI�(3) If we invoke the resort() method, the result set becomes 'Albany', 'Buffalo', CA, MA, 'New York', NY, WI��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Returns
void

Possible Exceptions
OLAPException

Post Conditions
(1) The new result set will be identical to the old, but the members will be sorted according to the sort criteria already applied to the query.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::selectAll
public void selectAll() throws OLAPException;

Sets the query to select all Members from the Dimension and clears all sorting criteria. This is equivalent to self.addAllFrom(self.dimension) followed by self.resetNaturalSortOrder().��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Returns
void

Possible Exceptions
OLAPException

Post Conditions
(1) The new result set will contain all members of the dimension.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::selectNone
public void selectNone() throws OLAPException;

Sets the query to select no Members from the Dimension and clears all sorting criteria.�This is equivalent to self.removeAllFrom(self.dimension) followed by self.resetNaturalSortOrder().��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Returns
void

Possible Exceptions
OLAPException

Post Conditions
(1) The new result set will be empty, and all previous sort criteria will be forgotten.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::newPropertyValueExpression
public ValueExpression newPropertyValueExpression(Property property, ValueDescriptor descriptor) throws OLAPException;

Return an instance of ValueExpression representing the value of a property.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is not valid for the dimension of the query.�
Parameters
Type		Name		Description 		
Property	property	An instance of Property whose values are of interest.
ValueDescriptor	descriptor	A ValueDescriptor specifying which value is to be obtained from the property.

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) property is a valid Property for self.dimension or one of its subsets(Hierarchies and Levels);�(2) property.valueType(descriptor) exists.

Post Conditions
Denote the MemberQuery instance as self, the returned instance of ValueExpression as newValueExpression, and the value of newValueExpression for a given member as newValueExpression(member).��(1) newValueExpression.dataType = property.valueType(descriptor).dataType;�(2) newValueExpression.dimension = self.dimension;�(2) newValueExpression(member) = property.getValue(member, descriptor) if member is valid for the property, return a missing value otherwise.

Method MemberQuery::newCellValueExpression
public ValueExpression newCellValueExpression(MemberCollection context, ValueDescriptor descriptor) throws OLAPException;

Return an instance of ValueExpression representing the value of a cell.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The supplied MemberCollection does not correctly qualify all dimensions other than the dimension of the MemberQuery instance.�
Parameters
Type		Name		Description 		
MemberCollection	context	The MemberCollection used to qualify the reference. The collection must include a Member for every dimension except the one over which the query is performed.
ValueDescriptor	descriptor	A ValueDescriptor specifying which value is to be obtained from the cell.

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.dimension is not the measures dimension;�(2) The context must contain one Member from each of the dimensions other than self.dimension - one of these must be an instance of Measure;�(3) If 'measure' denotes the instance of Measure contained in context, then measure.valueType(descriptor) exists.

Post Conditions
Denote the MemberQuery instance as self, the returned instance of ValueExpression as newValueExpression, and the value of newValueExpression for a given member as newValueExpression(member).��(1) newValueExpression.dataType = measure.valueType(descriptor).dataType;�(2) newValueExpression.dimension = self.dimension;�(2) The value of newValueExpression(member) is equal to the cell value for the combination of members specified by context together with the given member.

Method MemberQuery::newParameter
public ParameterHolder newParameter(String name, DataType dataType, OLAPAny value) throws OLAPException;

Return a new instance of ParameterHolder.��Possible error codes include:��NAME_IN_USE The given name is already taken.
Parameters
Type		Name		Description 		
String	name	The name of the parameter, if any. If the name is given, then it must be unique within the scope of the member query.
DataType	dataType	The data type of the value in the ParameterHolder. While the value of the parameter may change after creation, the data type remains constant.
OLAPAny	value	The initial/default value of the parameter.

Returns
ParameterHolder

Possible Exceptions
OLAPException

Pre Conditions
(1) The type of value matched the given dataType;�(2) There is not already a parameter with the same name for the MemberQuery instance.

Post Conditions
(1) If the name is not the empty string, then the ParameterHolder will be added to the parameters collection of the MemberQuery instance.�(2) The new instance of ParameterHolder will be initialized to the given type, name, and value.

Method MemberQuery::clone
public MemberQuery clone() throws OLAPException;

Create a complete copy of the query definition. Specifically, this method will create a new instance of MemberQuery mirroring the definition of the original together with copies of all attached ValueExpression instances. No metadata class will be copied. (So, for example, both the original and the copy will point to the same instance of Dimension.)��The new instance of MemberQuery will begin in an invalidated state even if the original had been validated. It can be modified like any other member query, and its state is independent of the original.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Returns
MemberQuery

Possible Exceptions
OLAPException

Post Conditions
(1) newMemberQuery.getStatus = INITIAL

Method MemberQuery::validate
public void validate() throws OLAPException;

Performs validation of query's definition, which will enable querying of member and property information from query if successful. To the degree that a vendor's implementation of this function also performs a query and fetches data, it is a synchronous operation.��The method will raise an exception if the MemberQuery instance is part of a larger query (such as a cube).��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) self.getStatus < > .VALIDATING

Post Conditions
(1) self.getStatus = VALIDATED

Method MemberQuery::validateAsync
public ProgressMonitor validateAsync() throws OLAPException;

This operation has the same effect as the validate() method, but is performed asynchronously. Control returns immediately to the caller while the cube validation occurs in the background. The method returns an instance of ProgressMonitor, which allows the client to monitor progress of the asynchronous operation. The member query will not be usable until the validation has concluded.��The method will raise an exception if the MemberQuery instance is part of a larger query (such as a cube).��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Returns
ProgressMonitor

Possible Exceptions
OLAPException

Pre Conditions
(1) self.getStatus <> VALIDATING

Post Conditions
(1) self.getStatus = VALIDATING.�(2) Once the asynchronous operation has completed, the post conditions of the validate() method apply.

Method MemberQuery::resultCount
public long resultCount() throws OLAPException;

Returns the number of members in the query. This may only be called after a successful validation of the query.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�NOT_VALIDATED		The query has not yet been validated, so no data is available.�
Returns
long

Possible Exceptions
OLAPException

Pre Conditions
(1) self.getStatus = VALIDATED or self.getStatus = MODIFIED

Method MemberQuery::getParameterByName
public ParameterHolder getParameterByName(String name) throws OLAPException;

Return the named parameter, if such exists. Raise an exception otherwise.��Possible error codes include:�BUSY			The query is currently being validated asynchronously.�NOT_FOUND		The parameter has not been found.
Parameters
Type		Name		Description 		
String	name	The name of the query parameter.

Returns
ParameterHolder

Possible Exceptions
OLAPException

Method MemberQuery::addDescriptor
public void addDescriptor(ValueDescriptor descriptor) throws OLAPException;

Add an instance of ValueDescriptor to the collection contained by the MemberQuery instance. The set of ValueDescriptors attached to the MemberQuery is part of the query definition. Each property of the members can have multiple values. For example, each property may have, in addition to the basic value, a formatted value, a background color, and a foreground color. Each kind of value present in the cell is represented by an instance of ValueDescriptor. (So, in the example above, there would be four instances, named "value", "formatted value", "background color", and "foreground color".) The only values that will be fetched by the query are those in the descriptors set attached to the member query. When the member query is first created it will contain only the default ValueDescriptor (the one named "value" above). If the client needs the additional property values, it must explicitly add the appropriate instances of ValueDescriptor to the query by calling this method. ��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Parameters
Type		Name		Description 		
ValueDescriptor	descriptor	The instance of ValueDescriptor to be added.

Returns
void

Possible Exceptions
OLAPException

Post Conditions
(1) descriptor will be in the set self.descriptors.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::removeDescriptor
public void removeDescriptor(ValueDescriptor descriptor) throws OLAPException;

Remove an instance of ValueDescriptor from the collection contained by the MemberQuery instance.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�
Parameters
Type		Name		Description 		
ValueDescriptor	descriptor	The instance of ValueDescriptor to be removed.

Returns
void

Possible Exceptions
OLAPException

Post Conditions
(1) descriptor will not be in the set self.descriptors.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::addProperty
public void addProperty(Property property) throws OLAPException;

Add an instance of Property to the collection contained by the MemberQuery instance. The set of Properties attached to the MemberQuery is part of the query definition. The only properties whose values will be fetched by the query are those in the property set attached to the cube. When the member query is first created it will contain only the default Property (the one named "name"). If the client needs to fetch the values of any additional properties, it must explicitly add the appropriate instances of Property to the query by calling this method.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is not valid for the dimension of the query.�
Parameters
Type		Name		Description 		
Property	property	The Property to be added.

Returns
void

Possible Exceptions
OLAPException

Post Conditions
(1) property will be in the set self.properties.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::removeProperty
public void removeProperty(Property property) throws OLAPException;

Remove a Property from the MemberQuery instance's collection. Values for this property will no longer be fetched by the query.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�INVALID_PROPERTY		The Property passed as parameter is associated with the query.�
Parameters
Type		Name		Description 		
Property	property	The Property to be removed.

Returns
void

Possible Exceptions
OLAPException

Post Conditions
(1) property will not be in the set self.properties.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::newBuffer
public EdgeLayerBuffer newBuffer(long start, long end) throws OLAPException;

Create a new edge layer buffer for the member query, specifying start and end indices in the set of members represented by the query.��Possible error codes include:��INVALID_INDICES		An end index is smaller than the corresponding start index�BUSY			The query is currently being validated asynchronously.�NOT_VALIDATED		The query has not yet been validated, so no data is available.�
Parameters
Type		Name		Description 		
long	start	the start index in the set of members represented by the query
long	end	the end index in the set of members represented by the query

Returns
EdgeLayerBuffer

Possible Exceptions
OLAPException

Pre Conditions
(1) self.getStatus = VALIDATED

Method MemberQuery::select
public void select(ValueExpression expression) throws OLAPException;

Select only those members from the dimension for which the ValueExpression is true, regardless of the current selection. (This operation effectively restarts the selection process.)��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�EXPRESSION_TYPE_ERROR	The expression does not have the correct data type (Boolean).�INCOMPATIBLE_EXPRESSION	The expression belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	expression	A Boolean-valued instance of ValueExpression to be used as a predicate.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) expression.query = self�(2) expression.dataType = BOOLEAN

Post Conditions
(1) The new set is defined to be the set of all members in self.dimension for which the value of expression is true.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::selectAllFrom
public void selectAllFrom(MemberScope scope) throws OLAPException;

Select only those members defined by 'scope', regardless of the current selection. (This operation effectively restarts the selection process.)��Possible error codes include:�BUSY				Either the MemberQuery instance or the parameter is currently involved in an asynchronously operation.�WRONG_DIMENSIONALITY	The member scope given as the "scope" parameter and the MemberQuery instance have different dimensionality.�
Parameters
Type		Name		Description 		
MemberScope	scope	The MemberScope whose members are to be selected.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) scope.dimension = self.dimension

Post Conditions
(1) The new return set is defined to be the return set of the parameter 'scope'.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::selectRelations
public void selectRelations(Member member, MemberRelation relationship, Hierarchy hierarchy) throws OLAPException;

Select only the relations of 'member' in 'hierarchy' defined by 'relationship', regardless of the current selection. (This operation effectively restarts the selection process.)��Possible error codes include: �BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	Either the Member or the Hierarchy passed as parameters belongs to a different dimension to the one the MemberQuery instance is querying over.�
Parameters
Type		Name		Description 		
Member	member	The instance of Member whose relations are to be selected.
MemberRelation	relationship	The MemberRelation defining the relationship between the given member and the set of members to be selected.
Hierarchy	hierarchy	The instance of Hierarchy defining the relationships.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) member.dimension = self.dimension;�(2) hierarchy.dimension = self.dimension

Post Conditions
(1) The new return set will be equal to set of all members of the self.dimension related to the given member in the given hierarchy as specified by the given relation.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::selectGeneration
public void selectGeneration(Hierarchy hierarchy, HierarchyDirection direction, long distance) throws OLAPException;

Selects only the collection of members that exist at the specified position in the hierarchy, regardless of the current selection. (This operation effectively restarts the selection process.)��If the direction is HEIGHT, then the collection is of members at 'distance' units from the leaf level. �If the direction is DEPTH, then the collection is of members at 'distance' units from the root level.��Possible error codes include:��BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The Hierarchy passed as parameter belongs to a different dimension to the one the MemberQuery instance is querying over.�INVALID_INDEX		The supplied distance parameter is invalid.�
Parameters
Type		Name		Description 		
Hierarchy	hierarchy	The instance of Hierarchy defining the generations.
HierarchyDirection	direction	A HierarchyDirection representing the direction in which to count generations.
long	distance	The number of the generation. The first generation is number zero.

Returns
void

Possible Exceptions
OLAPException

Pre Conditions
(1) hierarchy.dimension = self.dimension;�(2) distance >=0.

Post Conditions
(1) The new result set will be the set of all members of self.dimension in the specified generation of the given hierarchy.�(2) If the old value of self.getStatus was INITIAL, then it remains unchanged. For any other value it becomes MODIFIED.�(3) If the MemberQuery instance is part of a Cube, then the value of cube.getStatus changes according to the same rules as above.

Method MemberQuery::getStatus
public QueryStatus getStatus();

Return the current status of the query.
Returns
QueryStatus

Method MemberQuery::addMembers
public void addMembers(MemberCollection members) throws OLAPException;

Add the Members in the given collection to the MemberQuery instance's result set. Members already in the result set are skipped, and the remaining members are appended to any members already in the result set, retaining their order.��Possible error codes include:�BUSY				The query is currently being validated asynchronously.�WRONG_DIMENSIONALITY	The members do not all belong to the same dimension as the query.�
Parameters
Type		Name		Description 		
MemberCollection	members	An array of Members to add to the result set of the MemberQuery instance.

Returns
void

Possible Exceptions
OLAPException

�Interface MemberScope
public interface MemberScope extends PropertyScope

A MemberScope is an abstract type representing a set of Members. MemberScopes come in two basic varieties: fixed scopes, such as Dimension and Level, represent fixed sets of members; the other kind of scope is MemberQuery, which represents a set of members defined by a query. The set of members returned by a fixed query will stay the same between queries provided no database updates occur; the set of members returned by MemberQuery, on the other hand, may depend on such factors as time of day.��Despite these differences, all MemberScopes have one thing in common: all the instances of Member contained in a single MemberScope must belong to the same Dimension. In particular, each MemberScope is a subset of some Dimension.��The instances of Member contained in the fixed MemberScopes cannot be directly accessed by the kinds of operations found on collection classes. Instead the client must create an instance of MemberQuery to specify the precise set of members required, and must then use the buffer classes to extract the members.

Methods
public String getName();�public Dimension getDimension();�public MemberQuery newQuery(String name, InitialSelection initialSelection) throws OLAPException;

Method MemberScope::getName
public String getName();

Get the name of the metadata object. Names may be stored in the MD schema or artificially generated, depending on the server and interface implementation.�

Method MemberScope::getDimension
public Dimension getDimension();

Get the instance of Dimension of which the MemberScope instance is a subset.

Method MemberScope::newQuery
public MemberQuery newQuery(String name, InitialSelection initialSelection) throws OLAPException;

Create a new MemberQuery based on the dimension of the MemberScope instance.
Parameters
Type		Name		Description 		
String	name	The name of the new instance of MemberQuery. The name has no semantic meaning, and is not required to be unique.
InitialSelection	initialSelection	If ALL, the query initially contains all of the members of the MemberScope instance. If NONE, the query is initially empty.

Returns
MemberQuery

Possible Exceptions
OLAPException

�Interface Message
public interface Message

Status message event send from the implementation or server side of the API.�

Methods
public String getMessage();�public ErrorCode getErrorCode();�public long getNativeCode();�public SeverityCode getSeverity();�

Method Message::getMessage
public String getMessage();

Get a textual message that describes the status event.�

Method Message::getErrorCode
public ErrorCode getErrorCode();

Get the MDAPI-related error code.�

Method Message::getNativeCode
public long getNativeCode();

Get a native status code (code meaningful to implementation of API, to server, or to operating system).

Method Message::getSeverity
public SeverityCode getSeverity();

Get an indication of the severity of the error.
�Class OLAPException
public abstract class OLAPException extends java.lang.Exception

A collection of Message objects returned from an MDAPI object method.

Methods
public long getMaximumSeverity();�public MessageCollection getMessages();�

Method OLAPException::getMaximumSeverity
public long getMaximumSeverity();

Get the highest severity rating of all the messages contained in the exception.

Method OLAPException::getMessages
public MessageCollection getMessages();

Get the Messages generated by the exception.
�Interface ParameterHolder
public interface ParameterHolder extends ValueExpression

Represents a value to be used in expressions. ��The data type of the ParameterHolder must be fixed at creation time, but the value itself may be changed at any time by the client.��Note that changing the value in the ParameterHolder will require any query whose definition depends on it to be revalidated.

Methods
public OLAPAny getValue();�public void setValue(OLAPAny value);�public String getName();�

Method ParameterHolder::getValue
public OLAPAny getValue();

Get the current value of the query parameter. Text values may include wild-card patterns.

Method ParameterHolder::setValue
public void setValue(OLAPAny value);

Set the current value of the query parameter. Text values may include wild-card patterns.

Method ParameterHolder::getName
public String getName();

Get the name to be used to identify the parameter of the member query. If the parameter holder is given a non-empty name, then it will be registered in the collection of the parameter collection of the MemberQuery that created it. The name must be unique within the scope of the query. When a query is copied using the deepCopy() method, the attached parameter holders are also copied; those that were named in the original query will be accessible in the copy.
�Interface ProgressMonitor
public interface ProgressMonitor

Instances of ProgressMonitor are returned from potentially long-running operations, such as Cube::validateAsync(). The calling thread may do one of three things: �(1) poll the ProgressMonitor for completion using the getStatus() method;�(2) attempt to cancel the operation using cancel();�(3) become blocked until the operation is completed by calling the wait() method.��A typical UI scenario is:�(a) invoke the validateAsync operation and receive an instance of ProgressMonitor;�(b) open a dialog containing a cancel button; �(c) call the wait() method, which blocks the thread.��Two things can then occur:�(d1) the validate operation completes and the blocked thread is released.�(d2) a separate UI thread allows the user to push the cancel button. This invokes the cancel() operation, which attempts to cancel the query, sets the status to cancel, and releases the blocked thread by raising an exception.��(e) The newly released thread then closes the dialog.

Methods
public MessageCollection getMessages();�public void cancel() throws OLAPException;�public void wait() throws OLAPException;�public ProgressStatus getStatus() throws OLAPException;

Method ProgressMonitor::getMessages
public MessageCollection getMessages();

Get the Messages generated by the error. The collection is empty unless the status is OPRTATION_ERROR.

Method ProgressMonitor::cancel
public void cancel() throws OLAPException;

Attempt to cancel the ongoing operation, set the status to CANCELED, and release any threads blocked by the wait() method on the ProgressMonitor instance by raising an exception.��Possible error codes include:�OPERATION_CANCELED		The asynchronous operation has already been canceled.�OPERATION_COMPLETED		The asynchronous operation has already competed.�
Returns
void

Possible Exceptions
OLAPException

Method ProgressMonitor::wait
public void wait() throws OLAPException;

Block the calling thread until the operation is complete or canceled. In the latter case, an exception is raised. If any error occurs during execution of the long operation (such as a network error), an exception is raised and the thread released.��Possible error codes include:�OPERATION_CANCELED		The asynchronous operation has already been canceled.�ASYNCHRONOUS_ERROR	An error occurred during the execution of the asynchronous operation. Specific error information can be obtaining from the getMessages() method.�
Returns
void

Possible Exceptions
OLAPException

Method ProgressMonitor::getStatus
public ProgressStatus getStatus() throws OLAPException;

Return OPERATION_COMPLETED if the long-running operation is complete, OPERATION_IN_PROGRESS if it is in progress, or OPERATION_CANCELED if it has been canceled. Returns OPERATION_ERROR if an error occurred. The associated message collection then contains information about the error.��Returns control immediately.�
Returns
ProgressStatus

Possible Exceptions
OLAPException

�Interface Property
public interface Property

A Property is a relationship between members of a dimension and data values, each value identified by a member along a dimension. A Property may be considered a variable that is dimensioned by a single dimension.��Any Property object will have a single data type. The getValue() method returns values for the property packaged as an OLAPAny object.��In the future, there may be additional relationships specified between properties and property values with dimensions and members.�

Methods
public String getName();�public DataType getType();�public PropertyScope getScope();�public ValueType getValueType(ValueDescriptor descriptor);�public OLAPAny getValue(Member member) throws OLAPException;

Method Property::getName
public String getName();

Get the name of the property.�

Method Property::getType
public DataType getType();

Get the data type of the property. ��Possible types are:��double,�float,�text,�long,�date,�boolean�

Method Property::getScope
public PropertyScope getScope();

Get the PropertyScope that defines the set of all members having values for this property.

Method Property::getValueType
public ValueType getValueType(ValueDescriptor descriptor);

Get the ValueType, if any, corresponding to the value descriptor.

Parameters
Type		Name		Description 		
ValueDescriptor 	descriptor	The value descriptor categorizing the ValueType.

Method Property::getValue
public OLAPAny getValue(Member member) throws OLAPException;

Returns the value of a property at a given member.��Exception codes include:��WRONG_DIMENSIONALITY	The member does not share the same dimension as the property.
Parameters
Type		Name		Description 		
Member	member	Member at which the value for this property is sought

Returns
OLAPAny

Possible Exceptions
OLAPException

�Interface PropertyScope
public interface PropertyScope

PropertyScope is an abstract type representing a set of Members sharing a common set of properties. The instances of Property contained in the properties association are valid for all Members within the scope. The precise meaning of "members within the scope" is deferred to the subtypes of PropertyScope.

Methods
public PropertyCollection getScopeProperties();�public Property getPropertyByName(String name) throws OLAPException;�public PropertyCollection getAllProperties() throws OLAPException;

Method PropertyScope::getScopeProperties
public PropertyCollection getScopeProperties();

Get the properties defined to this scope. ��Properties defined to an enclosing scope are not included in the collection. For example, every property available to a dimension is applicable to any level within that dimension, but when obtaining the properties for any level in that dimension, the dimension-scoped properties will not be included.

Method PropertyScope::getPropertyByName
public Property getPropertyByName(String name) throws OLAPException;

Returns the property defined for the PropertyScope instance whose name matches the given string. This method can be used to get a property defined for the PropertyScope instance or inherited from an enclosing scope.
Parameters
Type		Name		Description 		
String	name	Name of property to get.

Returns
Property

Possible Exceptions
OLAPException

Method PropertyScope::getAllProperties
public PropertyCollection getAllProperties() throws OLAPException;

Returns a collection of all the properties available for this PropertyScope instance. This includes properties defined for the instance and properties inherited from an enclosing scope.
Returns
PropertyCollection

Possible Exceptions
OLAPException

�Interface Schema
public interface Schema

The Schema class represents a multi-dimensional schema that is accessible through a driver.

Methods
public String getSchemaVersion();�public String getSchemaName();�public String getConnectionString();�public Language getLanguage();�public void setLanguage(Language value);�public LanguageCollection getAvailableLanguages();�public Driver getDriver();�

Method Schema::getSchemaVersion
public String getSchemaVersion();

Get the version of the schema. Format TBD.

Method Schema::getSchemaName
public String getSchemaName();

Get the name of the schema. The name is unique over all schemata accessible through the driver.

Method Schema::getConnectionString
public String getConnectionString();

Get a string that identifies the schema to the driver. This string is saved with the driver name in the registry when a schema is registered. The user never sees the connection string when a connection is opened by the usual process of discovering installed drivers and/or registered schemata, but it is used when an application opens a connection with Driver::openConnection().

Method Schema::getLanguage
public Language getLanguage();

Get the default language for error messages produced in the domain of the Driver. This may be changed by the client.

Method Schema::setLanguage
public void setLanguage(Language value);

Set the default language for error messages produced in the domain of the Driver. This may be changed by the client.

Method Schema::getAvailableLanguages
public LanguageCollection getAvailableLanguages();

Get the languages supported by this connection.

Method Schema::getDriver
public Driver getDriver();

Get the Driver for which the schema is valid.
�Interface Session
public interface Session

Before doing anything else with the API, an application must create a Session object. The Session object is delivered by the OLAP Council, and is not implemented by the vendors. ��The Session object is created with the 'new' operator.�

Methods
public String getApiVersion();�public Language getLanguage();�public ConnectionCollection getOpenConnections();�public DriverCollection getInstalledDrivers();�public Driver getDriverByName(String driverName) throws OLAPException;�public Connection openConnection(String connectionString, String authenticationString) throws OLAPException;

Method Session::getApiVersion
public String getApiVersion();

Get the version of the MDAPI. Format TBD.

Method Session::getLanguage
public Language getLanguage();

Get the default language for error messages produced in the domain of the Session.

Method Session::getOpenConnections
public ConnectionCollection getOpenConnections();

Get the set of all currently open connections attached to the session.

Method Session::getInstalledDrivers
public DriverCollection getInstalledDrivers();

Get the installed drivers, as a DriverCollection. The collection is qualified by the name under which the driver was installed.��The list of drivers is maintained on each machine.�The list of drivers is maintained on each machine, in a property file whose location is specified when the first driver is installed.. The file is found for usage, and for subsequent driver installations, by searching CLASSPATH.�

Method Session::getDriverByName
public Driver getDriverByName(String driverName) throws OLAPException;

Returns an instance of Driver, given a driver name.
Parameters
Type		Name		Description 		
String	driverName	Name of driver.

Returns
Driver

Possible Exceptions
OLAPException

Method Session::openConnection
public Connection openConnection(String connectionString, String authenticationString) throws OLAPException;

Open a connection to a multi-dimensional schema.
Parameters
Type		Name		Description 		
String	connectionString	A string that identifies the schema to the driver
String	authenticationString	A string that provides authentication information about the user to the driver.

Returns
Connection

Possible Exceptions
OLAPException

�Interface ValueDescriptor
public interface ValueDescriptor

A ValueDescriptor maps an Property or Measure to an individual value in a cell. Given a Property or Measure, a ValueDescriptor, and a suitable tuple (which, in the case of MemberScope and Property is a degenerate single-member tuple). the API can produce a single data value. Each Connection has a ValueDescriptor named "value".

Methods
public String getName();�

Method ValueDescriptor::getName
public String getName();

Get a name for the ValueDescriptor that is unique within the context of the connection.
�Interface ValueExpression
public interface ValueExpression

Represents a function that returns a value for each member of the dimension associated with a query. Each ValueExpression instance returns a value of a specified data type. A ValueExpression instance may refer to other ValueExpression instances to support the representation of an expression.��With the exception of the subclass ParameterHolder, instances of ValueExpression are immutable.

Methods
public DataType getDataType();�public String getDisplayString();�public MemberQuery getQuery();�public ValueExpression opGT(ValueExpression rhs) throws OLAPException;�public ValueExpression opGE(ValueExpression rhs) throws OLAPException;�public ValueExpression opLT(ValueExpression rhs) throws OLAPException;�public ValueExpression opLE(ValueExpression rhs) throws OLAPException;�public ValueExpression opEQ(ValueExpression rhs) throws OLAPException;�public ValueExpression opNE(ValueExpression rhs) throws OLAPException;�public ValueExpression isMissing() throws OLAPException;�public ValueExpression isBetween(ValueExpression lhs, ValueExpression rhs, boolean strictly) throws OLAPException;�public ValueExpression isInTopN(ParameterHolder number) throws OLAPException;�public ValueExpression isInBottomN(ParameterHolder number) throws OLAPException;�public ValueExpression isInPercentile(ParameterHolder lhs, ParameterHolder rhs) throws OLAPException;

Method ValueExpression::getDataType
public DataType getDataType();

Get the DataType of the value.

Method ValueExpression::getDisplayString
public String getDisplayString();

Get an implementation-specific string that represents the value (for debugging/display purposes).

Method ValueExpression::getQuery
public MemberQuery getQuery();

Get the MemberQuery for which this value expression is defined. The value expression logically returns a single value for each member of the dimension of the query.

Method ValueExpression::opGT
public ValueExpression opGT(ValueExpression rhs) throws OLAPException;

Returns a ValueExpression representing the result of the binary operator "greater than".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance > rhs"

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) > rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.

Method ValueExpression::opGE
public ValueExpression opGE(ValueExpression rhs) throws OLAPException;

Returns a ValueExpression representing the result of the binary operator "greater than or equal".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance >=rhs".

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE .�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) >= rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.�

Method ValueExpression::opLT
public ValueExpression opLT(ValueExpression rhs) throws OLAPException;

Returns a ValueExpression representing the result of the binary operator "less than".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance < rhs".

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE .�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) < rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.�

Method ValueExpression::opLE
public ValueExpression opLE(ValueExpression rhs) throws OLAPException;

Returns a ValueExpression representing the result of the binary operator "less than or equal".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance <= rhs".

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE .�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) <= rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.�

Method ValueExpression::opEQ
public ValueExpression opEQ(ValueExpression rhs) throws OLAPException;

Returns a ValueExpression representing the result of the binary operator "equals".��If the data type is text, wild-card pattern matching is allowed. Allowable wildcard characters are:��*	match any number of characters�%	match any single character��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance = rhs".

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE, BOOLEAN.�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) = rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.

Method ValueExpression::opNE
public ValueExpression opNE(ValueExpression rhs) throws OLAPException;

Returns a ValueExpression representing the result of the binary operator "not equals".��If the data type is text, wild-card pattern matching is allowed. Allowable wildcard characters are:��*	match any number of characters�%	match any single character��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "rhs" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "rhs" belongs to another query.�
Parameters
Type		Name		Description 		
ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression "this ValueExpression instance <> rhs".

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = rhs.query;�(2) self.dataType = rhs.dataType;�(3) self.dataType is one of double, float, long, text, date, boolean.�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) = (self (member) <> rhs (member));�(4) If self (member) or rhs (member) is the missing value, then newValueExpression (member) is also the missing value.

Method ValueExpression::isMissing
public ValueExpression isMissing() throws OLAPException;

Returns a ValueExpression representing the test "is the value of the ValueExpression instance missing".��
Returns
ValueExpression

Possible Exceptions
OLAPException

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) newValueExpression (member) is true if and only if self (member) is the missing value.

Method ValueExpression::isBetween
public ValueExpression isBetween(ValueExpression lhs, ValueExpression rhs, boolean strictly) throws OLAPException;

Returns a ValueExpression representing the result of the test "is between values x and y".��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expressions passed as parameters "lhs" and/or "rhs" do not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expressions passed as parameters "lhs" and/or "rhs" belong to another query.�
Parameters
Type		Name		Description 		
ValueExpression	lhs	The ValueExpression to be used as the left hand side of the expression "lhs < ValueExpression instance < rhs
ValueExpression	rhs	The ValueExpression to be used as the right hand side of the expression "lhs < ValueExpression instance < rhs".
boolean	strictly	A Boolean value that determines whether the new expression is of the form "lhs < ValueExpression instance < rhs" (strictly = true) or "lhs<= ValueExpression instance <= rhs" (strictly = false).

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = lhs.query = rhs.query;�(2) self.dataType = lhs.dataType = rhs.dataType;�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.��

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) If the parameter strictly is equal to true, then� (3a) newValueExpression (member) = (self (member) > lhs (member) and self (member) < rhs (member));� otherwise� (3b) newValueExpression (member) = (self (member) >= lhs (member) and self (member) <= rhs (member));�(4) If any one of self (member), rhs (member), or lhs (member) is the missing value, then newValueExpression (member) is also the missing value.

Method ValueExpression::isInTopN
public ValueExpression isInTopN(ParameterHolder number) throws OLAPException;

Returns a ValueExpression representing the result of the test "is among the top N values". ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "number" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "number" belongs to another query.�
Parameters
Type		Name		Description 		
ParameterHolder	number	The value "N" in the predicate "is this one of the top N values?".

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = number.query�(2) number.dataType = LONG�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let N be the value of the parameter "number", and let T be the subset of M containing the first N members of S;�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.

Method ValueExpression::isInBottomN
public ValueExpression isInBottomN(ParameterHolder number) throws OLAPException;

Returns a ValueExpression representing the result of the test "is among the bottom N values". ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expression passed as parameter "number" does not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expression passed as parameter "number" belongs to another query.�
Parameters
Type		Name		Description 		
ParameterHolder	number	The value "N" in the predicate "is this one of the often N values?"

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = number.query�(2) number.dataType = LONG�(3) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let N be the value of the parameter "number", and let T be the subset of M containing the last N members of S;�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.

Method ValueExpression::isInPercentile
public ValueExpression isInPercentile(ParameterHolder lhs, ParameterHolder rhs) throws OLAPException;

Returns a ValueExpression representing the result of the test "is in the percentile between the given lower and upper bounds". ��Possible error codes include:�EXPRESSION_TYPE_ERROR	The expressions passed as parameters "lhs" and/or "rhs" do not have the correct data type.�INCOMPATIBLE_EXPRESSION	The expressions passed as parameters "lhs" and/or "rhs" belong to another query.�
Parameters
Type		Name		Description 		
ParameterHolder	lhs	The ParameterHolder to be used as the left hand side of the predicate "is this value in the lhs% to rhs% range?"
ParameterHolder	rhs	The ParameterHolder to be used as the right hand side of the predicate "is this value in the lhs% to rhs% range?"

Returns
ValueExpression

Possible Exceptions
OLAPException

Pre Conditions
(1) self.query = lower.query = upper.query�(2) lower.dataType= upper.dataType = DOUBLE�(3) 0 <= lower.value < upper.value <=1�(4) self.dataType is one of DOUBLE, FLOAT, LONG, TEXT, DATE.�

Post Conditions
Denote the value of a ValueExpression "expression" for a Member "member" as "expression(member)".�(1) newValueExpression.query = self.query;�(2) newValueExpression.dataType = BOOLEAN;�(3) For a set of members "M", the value of newValueExpression for the members of M is calculated as follows:�(3.1)	Calculate the value of the self(member) for each member in M;�(3.2)	Let S be the list of members in M sorted according to the natural ordering of these values (removing any members such that self(member) is missing);�(3.3)	Let L be the value of the parameter "lower", and let U be the value of the parameter "upper". Define T be the subset of M containing the members of S between L * count(S) and U * count(S).�(3.4)	For any member in M, the value of newValueExpression(member) is true if and only if member is in the set T.
�Interface ValueType
public interface ValueType

A ValueType represents a particular type of data for a Property or Measure.

Methods
public DataType getType();�

Method ValueType::getType
public DataType getType();

Get the data type of the values for the ValueType.�

�Collection classes
This section describes the Collection classes. The Collection classes are modeled after the Java vector class, use many of the same concepts, and expose many of the same methods. The Collection classes implement extendible arrays of MDAPI objects of a uniform type. Collections are ordered, and cannot contain holes or duplicate elements. Like arrays, the Collection classes can be accessed using an integer index. But the Collection classes also expose the Enumeration interface to allow simpler traversal.
The size of a Collection can grow or shrink as needed to accommodate the addition and removal of items after the object has been created. Each collection tries to optimize storage management by maintaining a capacity and a capacityIncrement. The capacity is always at least as large as the Collection size, but it is usually larger because as components are added to the Collection, the Collection's storage increases in chunks the size of capacityIncrement. An application can increase the capacity of a Collection before inserting a large number of components; thereby reducing the amount of incremental reallocation.
Collection classes can be instantiated directly, and are provided by the OLAP Council. This allows code that instantiates these classes to remain independent of a particular vendor’s implementation.
All of the collection classes extend a common collection class named Collection. The Collection class is documented in detail here.
Collection class OLAPCellCollection is also described in detail. The remaining collection classes implement the same methods (replacing ‘Cell’ with their own type), and are summarized.
�Class Collection
public abstract class Collection implements java.lang.Cloneable

Methods
public final int capacity();�public final void clear();�public Object clone();�public final boolean contains(Object object);�public final Object elementAt(int index);�public final java.util.Enumeration elements();�public final void ensureCapacity(int minCapacity);�public final boolean isEmpty();�public final int indexOf(Object object);�public final int indexOf(Object object, int startIndex);�public final void setSize(int newSize);�public final int size();�public final void trimToSize();�
Method CellCollection::capacity
public final int capacity();��Returns the capacity of the collection.

Returns
int

Possible Exceptions
none

Method Collection::clear
public final void clear();
Empties the collection of all elements.
Returns
void

Possible Exceptions
none

Method Collection::clone
public Object clone();
Returns a copy of the collection. Note that clone copies the collection itself, but does not copy the objects in the collection.
Returns
Object

Possible Exceptions
none

Method Collection::contains
public final boolean contains(Object object);
Returns true if the collection contains the given object; otherwise returns false.
Parameters
Type		Name		Description 		
Object	object	The object for which to search in the collection.

Returns
boolean

Possible Exceptions
none

Method Collection::elementAt
public final Object elementAt(int index) throws OLAPException;
Returns the object at the given zero-based index in the Collection.��Possible error codes include:�INDEX_OUT_OF_BOUNDS	The index is too large for the collection
Parameters
Type		Name		Description 		
int	index	The zero-based index of the object to return.

Returns
Object

Possible Exceptions
OLAPException

Method Collection::elements
public final java.util.Enumeration elements();
Returns an Enumeration object that can be used to iterate through the members of the collection.
Returns
Enumeration

Possible Exceptions
none

Method CellCollection::ensureCapacity
public final void ensureCapacity(int minCapacity);��Increases the capacity of the collection, if necessary, to ensure that it can hold at least the number of elements specified by the minCapacity parameter.

Parameters
Type		Name		Description 		
int	minCapacity	The new minimum capacity of the collection.
Returns
void

Possible Exceptions
none

Method Collection::isEmpty
public final boolean isEmpty();
Returns true if the collection contains no elements; otherwise returns false.
Returns
boolean

Possible Exceptions
none

Method Collection::indexOf
public final int indexOf(Object object);
Returns the zero-based index of the given object in the collection. Returns -1 if the object is not in the collection.
Parameters
Type		Name		Description 		
Object	object	The object whose index is to be returned.

Returns
int

Possible Exceptions
none

Method Collection::indexOf
public final int indexOf(Object object, int startIndex);
Returns the zero-based index of the given object in the collection, provided the index is greater than or equal to the value of parameter startIndex. Returns -1 if the object is not found.
Parameters
Type		Name		Description 		
Object	object	The object whose index is to be returned.
int	startIndex	The zero-based index into the collection at which to begin searching for the object
Returns
int

Possible Exceptions
none

Method Collection::setSize
public final void setSize(int newSize);
Sets the size of the collection. If the new size is greater than the current size, null items are appended to the collection as necessary. If the new size is less than the current size, all components at index newSize and greater are discarded.
Parameters
Type		Name		Description 		
int	newSize	The new size of the collection.

Returns
void

Possible Exceptions
none

Method Collection::size
public final int size();
Returns the number of elements in the collection.
Returns
int

Possible Exceptions
none

Method Collection::trimToSize
public final void trimToSize();
Reduces the capacity of the Collection to its current size.
Returns
void

Possible Exceptions
none

�Class CellCollection
public class CellCollection extends Collection

Methods
public final CellCollection(int initialCapacity, int capacityIncrement);�public final CellCollection(int initialCapacity);�public final CellCollection();�public final void add(Cell element);�public final void addAll(CellCollection elements);�public final void addAll(Cell[] elements);�public final Cell firstCell();�public final Cell lastCell();�public final boolean remove(Cell element);�public final boolean remove(int index);�public final boolean removeAll(CellCollection elements);�public final boolean retainAll(CellCollection elements);�public final void set(Cell element, int index);�public final Cell[] toArray();�public final Cell CellAt(int index);

Method CellCollection::CellCollection
public final CellCollection(int initialCapacity, int capacityIncrement);��A constructor that creates a CellCollection with a specified capacity and capacity increment.
Parameters
Type		Name		Description 		
int	capacity	The initial capacity of the collection.
int	capacityIncrement	The number of elements by which the capacity should be increased when the collection overflows.

Returns
CellCollection

Possible Exceptions
none

Method CellCollection::CellCollection
public final CellCollection(int initialCapacity);��A constructor that creates a CellCollection with a specified capacity.
Parameters
Type		Name		Description 		
int	capacity	The initial capacity of the collection.

Returns
CellCollection

Possible Exceptions
none

Method CellCollection::CellCollection
public final CellCollection();��A constructor that creates an empty CellCollection.
Returns
CellCollection

Possible Exceptions
none

Method CellCollection::add
public final void add(Cell element);��Adds a Cell to the collection.

Parameters
Type		Name		Description 		
Cell	element	The cell to add to the collection.

Returns
void

Possible Exceptions
none

Method CellCollection::addAll
public final void addAll(CellCollection elements);��Adds all of the elements in the given collection to the collection. Elements in the given collection that are already in the collection are eliminated, and any remaining elements are appended.

Parameters
Type		Name		Description 		
CellCollection	elements	The collection whose elements are to be added to the collection.
Returns
void

Possible Exceptions
none

Method CellCollection::addAll
public final void addAll(Cell[] elements);��Adds all of the elements in the given array to the collection. Elements in the array that are already in the collection are eliminated, and any remaining elements are appended.

Parameters
Type		Name		Description 		
Cell[]	elements	The array whose elements are to be added to the collection.
Returns
void

Possible Exceptions
none

Method CellCollection::firstCell
public final Cell firstCell();��Returns the first cell in the collection..
Returns
Cell

Possible Exceptions
none

Method CellCollection::lastCell
public final Cell lastCell();��Returns the last cell in the collection..
Returns
Cell

Possible Exceptions
none

Method CellCollection::remove
public final boolean remove(Cell element);��Removes the given Cell from the collection. All elements with an index greater than the removed element are shifted downward in the collection to eliminate the ‘hole’.
Parameters
Type		Name		Description 		
Cell	element	The Cell to remove from the collection.
Returns
boolean

Possible Exceptions
none

Method CellCollection::remove
public final boolean remove(int index);��Removes the Cell at the given zero-based index from the collection. All elements with an index greater than the removed element are shifted downward in the collection to eliminate the ‘hole’.��Possible error codes include:�INDEX_OUT_OF_BOUNDS	The index is too large for the collection
Parameters
Type		Name		Description 		
Cell	element	The Cell to remove from the collection.
Returns
boolean

Possible Exceptions
OLAPException

Method CellCollection::removeAll
public final boolean removeAll(CellCollection elements);
�Removes all elements in the given collection that are also elements of this collection from the collection.��Returns true if any element of the given collection was also an element of this collection, false otherwise.
Parameters
Type		Name		Description 		
CellCollection	elements	The collection of Cells to remove from the collection.
Returns
boolean

Possible Exceptions
none

Method CellCollection::retainAll
public final boolean retainAll(CellCollection elements);
�Removes all elements from the collection that are not the elements of the given collection.��Returns true if this Collection changed as a result of the call., false otherwise.
Parameters
Type		Name		Description 		
CellCollection	elements	The collection of Cells to retain.
Returns
boolean

Possible Exceptions
none

Method CellCollection::set
public final void set(Cell element, int index) throws OLAPException;��Sets the element of the collection at the given zero-based index to the specified Cell. If necessary, removes the Cell already at the specified index.. This method can replace any populated element of the collection or the first empty element. It cannot create ‘holes’ in the collection.��Possible error codes include:�INDEX_OUT_OF_BOUNDS	The index is too large for the collection

Parameters
Type		Name		Description 		
Cell	elements	The Cell to add to the collection.
int	index	The index at which to add the Cell.
Returns
void

Possible Exceptions
OLAPException

Method CellCollection::toArray
public final Cell[] toArray();��Creates an array of Cells with the same size as the collection and fills it with the elements of the collection.
Returns
Cell[]

Possible Exceptions
none

Method CellCollection::cellAt
public final Cell cellAt(int index) throws OLAPException;
Returns the Cell at the specified zero-based index in the collection.��Possible error codes include:�INDEX_OUT_OF_BOUNDS	The index is too large for the collection
�
Parameters
Type		Name		Description 		
int	index	The zero-based index of the Cell to get.
Returns
Cell

Possible Exceptions
OLAPException

�Class ConnectionCollection
public class ConnectionCollection extends Collection

Methods
public ConnectionCollection(int initialCapacity, int capacityIncrement);�public ConnectionCollection(int initialCapacity);�public ConnectionCollection();�public final void add(Connection element);�public final void addAll(ConnectionCollection elements);�public final void addAll(Connection[] elements);�public final Connection firstConnection();�public final Connection lastConnection();�public final boolean remove(Connection element);�public final boolean remove(int index);�public final boolean removeAll(ConnectionCollection elements);�public final boolean retainAll(ConnectionCollection elements);�public final void set(Connection element, int index);�public final Connection[] toArray();�public final Connection ConnectionAt(int index);�
�Class CubeEdgeCollection
public class CubeEdgeCollection extends Collection

Methods
public CubeEdgeCollection(int initialCapacity, int capacityIncrement);�public CubeEdgeCollection(int initialCapacity);�public CubeEdgeCollection();�public final void add(CubeEdge element);�public final void addAll(CubeEdgeCollection elements);�public final void addAll(CubeEdge[] elements);�public final CubeEdge firstCubeEdge();�public final CubeEdge lastCubeEdge();�public final boolean remove(CubeEdge element);�public final boolean remove(int index);�public final boolean removeAll(CubeEdgeCollection elements);�public final boolean retainAll(CubeEdgeCollection elements);�public final void set(CubeEdge element, int index);�public final CubeEdge[] toArray();�public final CubeEdge CubeEdgeAt(int index);�
�Class DimensionCollection
public class DimensionCollection extends Collection

Methods
public DimensionCollection(int initialCapacity, int capacityIncrement);�public DimensionCollection(int initialCapacity);�public DimensionCollection();�public final void add(Dimension element);�public final void addAll(DimensionCollection elements);�public final void addAll(Dimension[] elements);�public final Dimension firstDimension();�public final Dimension lastDimension();�public final boolean remove(Dimension element);�public final boolean remove(int index);�public final boolean removeAll(DimensionCollection elements);�public final boolean retainAll(DimensionCollection elements);�public final void set(Dimension element, int index);�public final Dimension[] toArray();�public final Dimension DimensionAt(int index);�
�Class DriverCollection
public class DriverCollection extends Collection

Methods
public DriverCollection(int initialCapacity, int capacityIncrement);�public DriverCollection(int initialCapacity);�public DriverCollection();�public final void add(Driver element);�public final void addAll(DriverCollection elements);�public final void addAll(Driver[] elements);�public final Driver firstDriver();�public final Driver lastDriver();�public final boolean remove(Driver element);�public final boolean remove(int index);�public final boolean removeAll(DriverCollection elements);�public final boolean retainAll(DriverCollection elements);�public final void set(Driver element, int index);�public final Driver[] toArray();�public final Driver DriverAt(int index);�
�Class EdgeBufferCollection
public class EdgeBufferCollection extends Collection

Methods
public EdgeBufferCollection(int initialCapacity, int capacityIncrement);�public EdgeBufferCollection(int initialCapacity);�public EdgeBufferCollection();�public final void add(EdgeBuffer element);�public final void addAll(EdgeBufferCollection elements);�public final void addAll(EdgeBuffer[] elements);�public final EdgeBuffer firstEdgeBuffer();�public final EdgeBuffer lastEdgeBuffer();�public final boolean remove(EdgeBuffer element);�public final boolean remove(int index);�public final boolean removeAll(EdgeBufferCollection elements);�public final boolean retainAll(EdgeBufferCollection elements);�public final void set(EdgeBuffer element, int index);�public final EdgeBuffer[] toArray();�public final EdgeBuffer EdgeBufferAt(int index);�
�Class EdgeLayerBufferCollection
public class EdgeLayerBufferCollection extends Collection

Methods
public EdgeLayerBufferCollection(int initialCapacity, int capacityIncrement);�public EdgeLayerBufferCollection(int initialCapacity);�public EdgeLayerBufferCollection();�public final void add(EdgeLayerBuffer element);�public final void addAll(EdgeLayerBufferCollection elements);�public final void addAll(EdgeLayerBuffer[] elements);�public final EdgeLayerBuffer firstEdgeLayerBuffer();�public final EdgeLayerBuffer lastEdgeLayerBuffer();�public final boolean remove(EdgeLayerBuffer element);�public final boolean remove(int index);�public final boolean removeAll(EdgeLayerBufferCollection elements);�public final boolean retainAll(EdgeLayerBufferCollection elements);�public final void set(EdgeLayerBuffer element, int index);�public final EdgeLayerBuffer[] toArray();�public final EdgeLayerBuffer EdgeLayerBufferAt(int index);�
�Class EdgeLayerCellCollection
public class EdgeLayerCellCollection extends Collection

Methods
public EdgeLayerCellCollection(int initialCapacity, int capacityIncrement);�public EdgeLayerCellCollection(int initialCapacity);�public EdgeLayerCellCollection();�public final void add(EdgeLayerCell element);�public final void addAll(EdgeLayerCellCollection elements);�public final void addAll(EdgeLayerCell[] elements);�public final EdgeLayerCell firstEdgeLayerCell();�public final EdgeLayerCell lastEdgeLayerCell();�public final boolean remove(EdgeLayerCell element);�public final boolean remove(int index);�public final boolean removeAll(EdgeLayerCellCollection elements);�public final boolean retainAll(EdgeLayerCellCollection elements);�public final void set(EdgeLayerCell element, int index);�public final EdgeLayerCell[] toArray();�public final EdgeLayerCell EdgeLayerCellAt(int index);�
�Class HierarchyCollection
public class HierarchyCollection extends Collection

Methods
public HierarchyCollection(int initialCapacity, int capacityIncrement);�public HierarchyCollection(int initialCapacity);�public HierarchyCollection();�public final void add(Hierarchy element);�public final void addAll(HierarchyCollection elements);�public final void addAll(Hierarchy[] elements);�public final Hierarchy firstHierarchy();�public final Hierarchy lastHierarchy();�public final boolean remove(Hierarchy element);�public final boolean remove(int index);�public final boolean removeAll(HierarchyCollection elements);�public final boolean retainAll(HierarchyCollection elements);�public final void set(Hierarchy element, int index);�public final Hierarchy[] toArray();�public final Hierarchy HierarchyAt(int index);�
�Class LanguageCollection
public class LanguageCollection extends Collection

Methods
public LanguageCollection(int initialCapacity, int capacityIncrement);�public LanguageCollection(int initialCapacity);�public LanguageCollection();�public final void add(Language element);�public final void addAll(LanguageCollection elements);�public final void addAll(Language[] elements);�public final Language firstLanguage();�public final Language lastLanguage();�public final boolean remove(Language element);�public final boolean remove(int index);�public final boolean removeAll(LanguageCollection elements);�public final boolean retainAll(LanguageCollection elements);�public final void set(Language element, int index);�public final Language[] toArray();�public final Language LanguageAt(int index);�
�Class LevelCollection
public class LevelCollection extends Collection

Methods
public LevelCollection(int initialCapacity, int capacityIncrement);�public LevelCollection(int initialCapacity);�public LevelCollection();�public final void add(Level element);�public final void addAll(LevelCollection elements);�public final void addAll(Level[] elements);�public final Level firstLevel();�public final Level lastLevel();�public final boolean remove(Level element);�public final boolean remove(int index);�public final boolean removeAll(LevelCollection elements);�public final boolean retainAll(LevelCollection elements);�public final void set(Level element, int index);�public final Level[] toArray();�public final Level LevelAt(int index);�
�Class MemberCollection
public class MemberCollection extends Collection

Methods
public MemberCollection(int initialCapacity, int capacityIncrement);�public MemberCollection(int initialCapacity);�public MemberCollection();�public final void add(Member element);�public final void addAll(MemberCollection elements);�public final void addAll(Member[] elements);�public final Member firstMember();�public final Member lastMember();�public final boolean remove(Member element);�public final boolean remove(int index);�public final boolean removeAll(MemberCollection elements);�public final boolean retainAll(MemberCollection elements);�public final void set(Member element, int index);�public final Member[] toArray();�public final Member MemberAt(int index);�
�Class MemberQueryCollection
public class MemberQueryCollection extends Collection

Methods
public MemberQueryCollection(int initialCapacity, int capacityIncrement);�public MemberQueryCollection(int initialCapacity);�public MemberQueryCollection();�public final void add(MemberQuery element);�public final void addAll(MemberQueryCollection elements);�public final void addAll(MemberQuery[] elements);�public final MemberQuery firstMemberQuery();�public final MemberQuery lastMemberQuery();�public final boolean remove(MemberQuery element);�public final boolean remove(int index);�public final boolean removeAll(MemberQueryCollection elements);�public final boolean retainAll(MemberQueryCollection elements);�public final void set(MemberQuery element, int index);�public final MemberQuery[] toArray();�public final MemberQuery MemberQueryAt(int index);�
�Class MessageCollection
public class MessageCollection extends Collection

Methods
public MessageCollection(int initialCapacity, int capacityIncrement);�public MessageCollection(int initialCapacity);�public MessageCollection();�public final void add(Message element);�public final void addAll(MessageCollection elements);�public final void addAll(Message[] elements);�public final Message firstMessage();�public final Message lastMessage();�public final boolean remove(Message element);�public final boolean remove(int index);�public final boolean removeAll(MessageCollection elements);�public final boolean retainAll(MessageCollection elements);�public final void set(Message element, int index);�public final Message[] toArray();�public final Message MessageAt(int index);�
�Class ParameterHolderCollection
public class ParameterHolderCollection extends Collection

Methods
public ParameterHolderCollection(int initialCapacity, int capacityIncrement);�public ParameterHolderCollection(int initialCapacity);�public ParameterHolderCollection();�public final void add(ParameterHolder element);�public final void addAll(ParameterHolderCollection elements);�public final void addAll(ParameterHolder[] elements);�public final ParameterHolder firstParameterHolder();�public final ParameterHolder lastParameterHolder();�public final boolean remove(ParameterHolder element);�public final boolean remove(int index);�public final boolean removeAll(ParameterHolderCollection elements);�public final boolean retainAll(ParameterHolderCollection elements);�public final void set(ParameterHolder element, int index);�public final ParameterHolder[] toArray();�public final ParameterHolder ParameterHolderAt(int index);�
�Class PropertyCollection
public class PropertyCollection extends Collection

Methods
public PropertyCollection(int initialCapacity, int capacityIncrement);�public PropertyCollection(int initialCapacity);�public PropertyCollection();�public final void add(Property element);�public final void addAll(PropertyCollection elements);�public final void addAll(Property[] elements);�public final Property firstProperty();�public final Property lastProperty();�public final boolean remove(Property element);�public final boolean remove(int index);�public final boolean removeAll(PropertyCollection elements);�public final boolean retainAll(PropertyCollection elements);�public final void set(Property element, int index);�public final Property[] toArray();�public final Property PropertyAt(int index);�
�Class SchemaCollection
public class SchemaCollection extends Collection

Methods
public SchemaCollection(int initialCapacity, int capacityIncrement);�public SchemaCollection(int initialCapacity);�public SchemaCollection();�public final void add(Schema element);�public final void addAll(SchemaCollection elements);�public final void addAll(Schema[] elements);�public final Schema firstSchema();�public final Schema lastSchema();�public final boolean remove(Schema element);�public final boolean remove(int index);�public final boolean removeAll(SchemaCollection elements);�public final boolean retainAll(SchemaCollection elements);�public final void set(Schema element, int index);�public final Schema[] toArray();�public final Schema SchemaAt(int index);�
�Class ValueDescriptorCollection
public class ValueDescriptorCollection extends Collection

Methods
public ValueDescriptorCollection(int initialCapacity, int capacityIncrement);�public ValueDescriptorCollection(int initialCapacity);�public ValueDescriptorCollection();�public final void add(ValueDescriptor element);�public final void addAll(ValueDescriptorCollection elements);�public final void addAll(ValueDescriptor[] elements);�public final ValueDescriptor firstValueDescriptor();�public final ValueDescriptor lastValueDescriptor();�public final boolean remove(ValueDescriptor element);�public final boolean remove(int index);�public final boolean removeAll(ValueDescriptorCollection elements);�public final boolean retainAll(ValueDescriptorCollection elements);�public final void set(ValueDescriptor element, int index);�public final ValueDescriptor[] toArray();�public final ValueDescriptor ValueDescriptorAt(int index);�

� COMMENTS * MERGEFORMAT �

	� COMMENTS * MERGEFORMAT �� COMMENTS * MERGEFORMAT �

� COMMENTS * MERGEFORMAT �

� TITLE * MERGEFORMAT �MDAPI Java Reference�

		Table of Contents

�PAGE �x�
� COMMENTS * MERGEFORMAT �

�PAGE �i�
	� COMMENTS * MERGEFORMAT �

� COMMENTS * MERGEFORMAT �

�PAGE �xii�
� COMMENTS * MERGEFORMAT �

� TITLE * MERGEFORMAT �MDAPI Java Reference�

		Preface

� TITLE * MERGEFORMAT �MDAPI Java Reference�		

		� STYLEREF "Heading 1" * MERGEFORMAT �Classes�

�PAGE �18�
	� COMMENTS * MERGEFORMAT �	

�PAGE �19�
	� COMMENTS * MERGEFORMAT �

�
� FILENAME \p * MERGEFORMAT �\\Superior\develop\Public\OLAP Council\v2.0\javaref.doc�		� DATE \l �1/26/98� � TIME �6:11 AM�

